Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(16): 4027-4032, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666315

RESUMEN

Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Carbono/análisis , Ecosistema , Plantas/metabolismo , Suelo/química , Biomasa , China , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Granjas , Bosques , Pradera , Actividades Humanas , Humanos , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Dispersión de las Plantas , Plantas/química , Plantas/clasificación , Lluvia , Temperatura
2.
Oecologia ; 180(3): 671-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26572635

RESUMEN

The ability of general scaling models to capture the central tendency or dispersion in biological data has been questioned. In fact, the appropriate domain of such models has never been clearly articulated and they have been supported and challenged using both interspecific and/or intraspecific data. Here, we evaluate several simplifying assumptions and predictions of two prominent scaling models: West, Brown and Enquist's fractal model (WBE) and a null model of geometric similarity (GEOM). Using data for 53 herbaceous angiosperm species from the Songnen Grasslands of Northern China, we compared both the interspecific and intraspecific scaling relationships for plant geometry and biomass partitioning. Specifically, we considered biomass investment in shoots and leaves as well as related several traits not commonly collected in plant allometric analyses: shoot volume, leaf number, and mean leaf mass. At the interspecific level, we find substantial variation in regression slopes, and the simplifying assumptions of WBE and predictions of both the WBE and GEOM models do not hold. In contrast, we find substantial support for the WBE model at the intraspecific level, and to a lesser extent for GEOM. The differences between our results at interspecific and intraspecific levels are due to the fact that leaf size and stem tissue density vary considerably across species in contrast to the simplifying assumptions of WBE. These results highlight the domain within which simplifying model assumptions might be most appropriate, and suggest allometric models may be useful points of departure within some species, growth forms or taxonomic groups.


Asunto(s)
Modelos Biológicos , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Plantas/anatomía & histología , Biomasa , China , Tallos de la Planta/citología , Especificidad de la Especie
3.
ScientificWorldJournal ; 2014: 101860, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25110722

RESUMEN

In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m(-2), litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.


Asunto(s)
Ecosistema , Plantones/crecimiento & desarrollo , Suelo/química , Streptophyta/fisiología , Biomasa , Semillas/crecimiento & desarrollo
4.
ScientificWorldJournal ; 2014: 834630, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25093210

RESUMEN

A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.


Asunto(s)
Giberelinas/farmacología , Semillas/fisiología , Semillas/efectos de la radiación , Zea mays/efectos de los fármacos , Zea mays/fisiología , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/fisiología , Cloruro de Sodio/farmacología
5.
ScientificWorldJournal ; 2014: 170418, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610896

RESUMEN

Salinization has severe influences on agriculture in the whole world. The main aims of this work were to evaluate osmotic effect and ion effect of NaCl on seed germination of three sunflower (Helianthus annuus L.) cultivars interacting with three alternating temperature regimes and to select the most salt tolerant cultivars to plant in the saline region. Seeds were germinated in the isotonic NaCl and polyethylene glycol (PEG) solutions of -0.45, -0.90, -1.34, -1.79, and -2.24 MPa at 10:20, 15:25, and 20:30 °C temperature regimes. Both NaCl and PEG inhibited germination, but the effects of NaCl were less as compared to that of PEG, which means that adverse effects of PEG on germination were due to osmotic effect rather than specific ion accumulation. For the three cultivars, higher germination occurred at 10:20 °C in NaCl treatments and at 20:30 °C in the isotonic PEG treatments. Among the three cultivars, Sandaomei (SDM) is the most tolerant to salt and PEG stress.


Asunto(s)
Germinación/efectos de los fármacos , Polietilenglicoles/farmacología , Semillas/efectos de los fármacos , Germinación/fisiología , Presión Osmótica/efectos de los fármacos , Salinidad , Sales (Química)/química , Semillas/fisiología , Temperatura , Agua/química
6.
Asian-Australas J Anim Sci ; 27(6): 818-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25050019

RESUMEN

The nutrient composition of pasture, voluntary intake and digestibility of diet ingested by goats grazing on an introduced Leymus chinensis pasture were measured across spring (May), summer (July), autumn (October) and winter (March). In each season, 12 Inner Mongolian Cashmere goats (6 wethers and 6 does with an average live weight of 22.2±1.3 kg and 19.5±0.8 kg, respectively) were used to graze on a 2 hectares size paddock. Diet selection was observed and the plant parts selected by grazing goats and whole plant L. chinensis were sampled simultaneously. The alkane pair C32:C33 and C36 were used to estimate intake and digestibility, respectively. The results showed that the plant parts selected by goats had higher crude protein (CP) and lower acid detergent fiber (ADF) and neutral detergent fiber (NDF) than the whole plant, especially in the autumn and winter. The voluntary intake of dry matter (DM), CP, ADF, NDF, and metabolizable energy (ME) by goats was highest in summer (p<0.05). The goats ingested more CP, ME, and less ADF in spring than in autumn (p<0.05). The intakes of DM, CP, and ME were lowest in winter (p<0.05). There were significant differences in nutrient intake between wethers and does in each season, except for the ADF and ME intake per metabolic weight (LW(0.75)). The nutrient digestibilities were higher in spring and summer, and decreased significantly during the autumn and winter (p<0.05). Goats, especially wethers, had a relative constant NDF digestibility across seasons, however, the apparent digestibility of CP in both wethers and does, decreased to negative values in winter. The grazing goats experienced relatively sufficient nutrients supply in spring and summer, and a severe deficiency of CP and ME in winter.

7.
Ecol Evol ; 14(5): e11336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711485

RESUMEN

The preservation or removal of apical meristem in Leymus chinensis is contingent upon grazing intensity and has a significant impact on above- and belowground biomass, nutritive value, and sustainability of L. chinensis grassland. However, this topic remains understudied. Therefore, a manipulative trial was conducted to induce grazing defoliation through mowing, where two post-grazing heights (preservation or removal of the apical meristem) and four pre-grazing plant heights (i.e., 18, 24, 31, and 35 cm) are combined factorially to create gradients of grazing intensities, resulting in a total of eight treatments. Additionally, two identical control treatments are also incorporated. Our results showed that apical meristem removal at various pre-grazing heights resulted in varying degrees of increased grazing intensities, thereby enhancing the nutritive value of L. chinensis. However, this practice also led to detrimental effects on the plant's carbohydrates reserve as well as herbage mass. The results indicated that although defoliation in treatments involving apical meristem removal resulted in the highest number of frequent cuttings, it did not confer any advantages in terms of herbage mass and nutrient preserves, except for herbage nutritive values when compared to treatments involving apical meristem preservation. The apical meristem preservation treatments demonstrated the highest CP yield over a 2-year period compared to the apical meristem removal treatments. Furthermore, within these apical meristem preservation treatments, only when the pre-grazing height is 35 cm and post-grazing height is 17 cm, there is no significant decrease in above- and belowground biomass. This establishes this specific defoliation regime as an optimal and effective management strategy for L. chinensis grassland.

8.
Physiol Plant ; 146(1): 26-38, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22324972

RESUMEN

Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions.


Asunto(s)
Chenopodium quinoa/fisiología , Estrés Oxidativo/fisiología , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/fisiología , Cloruro de Sodio/metabolismo , Adaptación Fisiológica , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Salinidad
9.
Ecol Evol ; 12(4): e8845, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35449585

RESUMEN

Developmental stability, canalization, and phenotypic plasticity are the most common sources of phenotypic variation, yet comparative studies investigating the relationships between these sources, specifically in plants, are lacking. To investigate the relationships among developmental stability or instability, developmental variability, canalization, and plasticity in plants, we conducted a field experiment with Abutilon theophrasti, by subjecting plants to three densities under infertile vs. fertile soil conditions. We measured the leaf width (leaf size) and calculated fluctuating asymmetry (FA), coefficient of variation within and among individuals (CVintra and CVinter), and plasticity (PIrel) in leaf size at days 30, 50, and 70 of plant growth, to analyze the correlations among these variables in response to density and soil conditions, at each of or across all growth stages. Results showed increased density led to lower leaf FA, CVintra, and PIrel and higher CVinter in fertile soil. A positive correlation between FA and PIrel occurred in infertile soil, while correlations between CVinter and PIrel and between CVinter and CVintra were negative at high density and/or in fertile soil, with nonsignificant correlations among them in other cases. Results suggested the complexity of responses of developmental instability, variability, and canalization in leaf size, as well as their relationships, which depend on the strength of stresses. Intense aboveground competition that accelerates the decrease in leaf size (leading to lower plasticity) will be more likely to reduce developmental instability, variability, and canalization in leaf size. Increased developmental instability and intra- and interindividual variability should be advantageous and facilitate adaptive plasticity in less stressful conditions; thus, they are more likely to positively correlate with plasticity, whereas developmental stability and canalization with lower developmental variability should be beneficial for stabilizing plant performance in more stressful conditions, where they tend to have more negative correlations with plasticity.

10.
Plant Environ Interact ; 3(3): 118-129, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284429

RESUMEN

Selections on emergence time might be conflicting, suggesting the existence of the optimal emergence time for plants. However, we know little about this and how morphological plasticity contributes to the strategies of plants in response to emergence timing. To better understand this issue from a dynamic perspective, we conducted a field experiment by subjecting plants of Abutilon theophrasti to four emergence treatments (ET1 ~ ET4) and measuring a number of mass and morphological traits on them at different growth stages (I ~ IV). On day 50, 70, and/or final harvest, among all ET treatments, plants germinated in late spring (ET2) performed the best in total mass, spring germinants (ET1) and ET2 performed better in stem allocation, stem, and root diameters than later germinants (ET3 and ET4); summer germinants (ET3) had the highest reproductive mass and allocation, while late-summer germinants (ET4) had the greatest leaf mass allocation, with greater or canalized leaf number, and root length traits than others. Plants that emerged in late spring can maximize their growth potential, while those with either advanced or delayed emergence are still capable of adaptation via allocation and morphological plasticity. Early germinants (ET1 and ET2) preferred stem growth to leaf and reproductive growth, due to sufficient time for reproduction in the growth season. With limited time for growth, plants that emerged late may prefer to quicken leaf growth (indicated by increased leaf mass allocation and leaf number) at the cost of stem or root growth for the complete life cycle, reflecting both positive and negative effects of delayed emergence.

11.
Ecol Evol ; 11(17): 11945-11959, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522352

RESUMEN

Phenotypic integration and developmental canalization have been hypothesized to constrain the degree of phenotypic plasticity, but little evidence exists, probably due to the lack of studies on the relationships among the three processes, especially for plants under different environments. We conducted a field experiment by subjecting plants of Abutilon theophrasti to three densities, under infertile and fertile soil conditions, and analyzing correlations among canalization, integration, and plasticity in a variety of measured morphological traits after 50 and 70 days, to investigate the relationships among the three variables in response to density and how these responses vary with soil conditions and growth stages. Results showed trait canalization decreased and phenotypic integration and the degree of plasticity (absolute plasticity) in traits increased with density. Phenotypic integration often positively correlated with absolute plasticity, whereas correlations between trait canalization and plasticity were insignificant in most cases, with a few positive ones between canalization and absolute plasticity at low and medium densities. As plants grew, these correlations intensified in infertile soil and attenuated in fertile soil. Our findings suggested the complexity of the relationship between canalization and plasticity: Decreased canalization is more likely to facilitate active plastic responses under more favorable conditions, whereas increased level of integration should mainly be an outcome of plastic responses. Soil conditions and growth stage may affect responses of these correlations to density via modifying plant size, competition strength, and plastic responses in traits. We also predicted that decreased canalization can be advantageous or disadvantageous, and the lack of response to stress may demonstrate a stronger ability of adaptation than passive response, thus should be adaptive plasticity as active response.

12.
Ecol Evol ; 11(15): 10590-10599, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367599

RESUMEN

AIM: How plants cope with increases in population density via root plasticity is not well documented, although abiotic environments and plant ontogeny may have important roles in determining root response to density. To investigate how plant root plasticity in response to density varies with soil conditions and growth stages, we conducted a field experiment with an annual herbaceous species (Abutilon theophrasti). METHODS: Plants were grown at low, medium, and high densities (13.4, 36.0, and 121.0 plants m-2, respectively), under fertile and infertile soil conditions, and a series of root traits were measured after 30, 50, and 70 days. RESULTS: Root allocation increased, decreased, or canalized in response to density, depending on soil conditions and stages of plant growth, indicating the complex effects of population density, including both competitive and facilitative effects. MAIN CONCLUSIONS: Root allocation was promoted by neighbor roots at early stages and in abundant resource availability, due to low-to-moderate belowground interactions among smaller plants, leading to facilitation. As plants grew, competition intensified and infertile soil aggravated belowground competition, leading to decreased root allocation in response to density. Root growth may be more likely restricted horizontally rather than vertically by the presence of neighbor, suggesting a spatial orientation effect in their responses to density. We emphasized the importance of considering effects of abiotic conditions and plant growth stages in elucidating the complexity of density effects on root traits.

13.
Animals (Basel) ; 11(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807953

RESUMEN

Grazing Swan geese (Anser cygnoides) have good meat quality but grow slowly. This study aimed to study whether supplemental feeding could improve growth performance of grazing Swan geese and investigate a suitable dietary metabolizable energy (ME) level of supplemental diet for grazing Swan geese. Naturalized healthy male Swan geese (n = 144; 42 ± 2.0 days and 1.21 ± 0.17 kg) were randomly allocated into 4 groups and grazed on pasture alone (control, CON) or offered supplemental diets with ME of 9.5, 11.5, or 13.5 MJ/kg of DM after grazing. Growth performance and body-size measurements (including bone development) were lower (p < 0.05) in CON versus supplemented geese, as well as slaughter measurements on days 28 and 56. The DM intake linearly decreased (p < 0.01) with increasing dietary ME from day 29 to 56. Slaughter, semi-eviscerated, eviscerated, and thigh muscle yield linearly (p < 0.01) decreased with increasing dietary ME on day 56. Lightness (L*) and yellowness (b*) for breast and thigh muscle on days 28 and 56, and breast muscle shear force on day 56, were lower (p < 0.01) in supplemented versus CON geese. In conclusion, supplemental feeding improved growth performance and carcass characteristics of grazing Swan geese, and supplemental feed with ME of 9.5 MJ/kg of DM could be offered to improve growth and meat quality of grazing Swan geese.

14.
Ying Yong Sheng Tai Xue Bao ; 32(2): 425-432, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33650351

RESUMEN

The trade-off between leaf size and number is the basis for plant growth strategies. It is of great significance to study the underlying mechanism of leaf size and number trade-offs for well understanding plant growth strategies. In this study, leaf size was expressed by the dry mass of single leaf, while leafing intensity was expressed by the number of leaves per unit stem volume. We used standardized major axis regression analysis method to examine the trade-off relationship between leaf size and number in Hulunbuir grassland. There was a significant negative isometric-growth trade-off between leaf size and number in Chenqicuogang (typical steppe) and Chenqibayi (meadow steppe). There was a significant negative allometric-growth trade-off between leaf size and number in Xeltala (meadow steppe). The underlying mechanism of the relationship between leaf size and number depended on the leaf and stem biomass allocation mechanism and the changes of the stem tissue density.


Asunto(s)
Pradera , Hojas de la Planta , Biomasa , China , Análisis de Regresión
15.
Ann Bot ; 106(6): 1027-35, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20929898

RESUMEN

BACKGROUND AND AIMS: Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate. METHODS: Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time. KEY RESULTS: Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased. CONCLUSIONS: The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils.


Asunto(s)
Germinación/fisiología , Hordeum/efectos de los fármacos , Hordeum/fisiología , Presión Osmótica , Salinidad , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/fisiología , Cloruro de Sodio/farmacología
16.
Plants (Basel) ; 9(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121479

RESUMEN

An in-depth assessment of plant nutrient resorption can offer insights into understanding ecological processes and functional responses to biotic and abiotic changes in the environment. The legume proportion in a mixed grassland can drive changes in the soil environment and plant relationships, but little information is available regarding how the legume proportion influences plant nutrient resorption in mixed grasslands. In this study, three mixed communities of Leymus chinensis (Trin.) Tzvel. and Medicago sativa L. differing in legume proportion (Low-L, with 25% legume composition; Mid-L, with 50% legume composition; High-L, with 75% legume composition) were established with four replicates in a degraded grassland. Four years after establishing the mixed grassland, the quantity of biological N2 fixation by M. sativa, the availabilities of water and nitrogen (N) and phosphorus (P) in soil were examined, and the concentrations and resorption of leaf N and P for both species were measured during forage maturation and senescence. The results showed Mid-L had greater biological N2 fixation and soil N availability than Low-L and High-L, while the High-L had lower soil water and P availability, but a greater soil available N:P ratio compared with Low-L and Mid-L. Legume proportion did not alter N or P concentrations of mature leaves. However, in Mid-L N resorption was reduced by 8 to 16% for the two mixed-species compared with Low-L and High-L. High-L enhanced P resorption by 20 to 24% in both plant species compared with Low-L. The L. chinensis and M. sativa responded differently to varied legume proportion in terms of P resorption. It was concluded that legume proportion drove changes in soil nutrient availability of mixed communities, which primarily altered plant nutrient resorption during senescence, but had no influence on the nutrient concentrations of mature plants. A moderate legume proportion reduced N resorption, and increased senesced leaf N concentration of grass and legume species. The difference in P resorption by two mixed-species significantly changed the interspecific difference of senesced leaf P concentration and the N:P ratio with varied legume proportion.

17.
Bioresour Technol ; 312: 123512, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32473472

RESUMEN

Five white-rot fungi Pleurotus ostreatus, Lentinus edodes, Hericium erinaceus, Pleurotus eryngii and Flammulina filiformis were studied (solid-state incubation and in vitro gas production) to determine lignin degradation and optimal duration of fermentation of corn straw. All fungi significantly decreased lignin, with optimal reductions after 28 d. Although cellulose also decreased, L. edodes and P. eryngii minimized these losses. In intro dry matter digestibility, total volatile fatty acid concentration and total gas production of fermented corn straw decreased (P < 0.001) as fermentation was prolonged, with improved rumen fermentability for all fungal treatments except F. filiformis. Total gas production in L. edodes did not decrease but peaked on day 28, whereas F. filiformis reduced methane emission. In conclusion, fermentation of corn straw with P. eryngii or L. edodes for 28 d degraded lignin and improved nutritional value as ruminant feed.


Asunto(s)
Alimentación Animal , Zea mays , Animales , Fermentación , Lignina , Rumen , Rumiantes
18.
Ecol Evol ; 9(4): 1545-1553, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847054

RESUMEN

It is unknown whether phenotypic plasticity in fitness-related traits is associated with salinity-sodicity tolerance. This study compared growth and allocation phenotypic plasticity in two species with low salinity-sodicity tolerance (Chenopodium acuminatum and C. stenophyllum) and two species with high salinity-sodicity tolerance (Suaeda glauca and S. salsa) in a pot experiment in the Songnen grassland, China. While the species with low tolerance had higher growth and allocation plasticity than the highly tolerant species, the highly tolerant species only adjusted their growth traits and maintained higher fitness (e.g., plant height and total biomass) in response to increased soil salinity-sodicity, with low biomass allocation plasticity. Most plasticity is "apparent" plasticity (ontogenetic change), and only a few traits, for example, plant height:stem diameter ratio and root:shoot biomass ratio, represent "real" plasticity (real change in response to the environment). Our results show that phenotypic plasticity was negatively correlated with saline-sodic tolerance and could be used as an index of species sensitivity to soil salinity-sodicity.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31035418

RESUMEN

Daily surface soil temperature data from 360 weather stations in China during 1962-2011 were retrieved and analyzed. The data revealed two aspects of asymmetric soil warming. Firstly, there was asymmetry between day and night in terms of increases in soil temperature. The daily maximum surface soil temperature ( S T max ) and daily minimum surface soil temperature ( S T min ) increased at rates of 0.031 and 0.055 °C/year over the 50-year interval, respectively. As a consequence of the more rapid increases in S T min , the soil diurnal temperature range (SDTR) decreased at most stations (average rate of -0.025 °C/year), with the most profound decrease in winter (-0.08 °C/year). The solar duration (SD) was positively related to SDTR and is regarded as the key underlying cause of the decreasing SDTR. Secondly, there was asymmetry between the soil and air in the temperature increase. The differences between soil and air temperature ( T D ) were highest in summer (2.76 °C) and smallest in winter (1.55 °C), which decreased by 0.3 °C over the study interval, this meant agricultural practice plans based on air temperature alone may be severely limited. The difference between soil temperature and air temperature reduces at night. This would facilitate the wintering of perennials in areas near the zero-contour line.


Asunto(s)
Cambio Climático , Suelo , Temperatura , Agricultura , China , Calentamiento Global , Estaciones del Año , Luz Solar
20.
Sci Total Environ ; 647: 1344-1350, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180341

RESUMEN

Water and nitrogen (N) availability to plants are spatially and temporally variable in arid and semi-arid grasslands. We aimed to investigate the eco-physiological responses of three bunchgrass species to water and N addition along a gradient of habitat degradation in the Inner Mongolian typical grasslands. The effects of water and N addition on aboveground and belowground growth and biomass allocation and water- and nitrogen-use efficiency (WUE and NUE) of Stipa grandis, Agropyron cristatum and Cleistogenes squarrosa from non-degraded, moderately-degraded and heavily-degraded grasslands, respectively, were compared. Stipa grandis had higher specific root length and WUE than C. squarrosa, while C. squarrosa had higher NUE than S. grandis in water- and N-limited conditions. Responses of A. cristatum were intermediate between those of S. grandis and C. squarrosa. Water and N addition did not have a significant effect on growth and biomass allocation of S. grandis, but it increased growth and leaf biomass allocation of A. cristatum and growth and stem biomass allocation of C. squarrosa. The three species differ in WUE, NUE, biomass allocation and responses to water and N addition, and these differences are adaptive to their respective habitats. The degraded grasslands can be restored by an increase in water and N availability such as is expected to occur via climatic change, but S. grandis will not benefit from the increases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA