Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(18): e2220036120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094132

RESUMEN

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Ratones , Animales , Medios de Contraste/química , Cirrosis Hepática/patología , Hígado/patología , Imagen por Resonancia Magnética/métodos , Modelos Animales de Enfermedad , Nanopartículas Magnéticas de Óxido de Hierro , Colágeno/análisis
2.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901603

RESUMEN

Imaging tools for kidney inflammation could improve care for patients suffering inflammatory kidney diseases by lessening reliance on percutaneous biopsy or biochemical tests alone. During kidney inflammation, infiltration of myeloid immune cells generates a kidney microenvironment that is oxidizing relative to normal kidney. Here, we evaluated whether magnetic resonance imaging (MRI) using the redox-active iron (Fe) complex Fe-PyC3A as an oxidatively activated probe could serve as a marker of kidney inflammation using mouse models of unilateral ischemia-reperfusion injury (IRI) and lupus nephritis (MRL-lpr mice). We imaged unilateral IRI in gp91phox knockout mice, which are deficient in the nicotinamide oxidase II (NOX2) enzyme required for myeloid oxidative burst, as loss of function control, and imaged MRL/MpJ mice as non-kidney involved lupus control. Gadoterate meglumine was used as a non-oxidatively activated control MRI probe. Fe-PyC3A safety was preliminarily examined following a single acute dose. FePyC3A generated significantly greater MRI signal enhancement in the IRI kidney compared to the contralateral kidney in wild-type mice, but the effect was not observed in the NOX2-deficient control. Fe-PyC3A also generated significantly greater kidney enhancement in MRL-lpr mice compared to MRL/MpJ control. Gadoterate meglumine did not differentially enhance the IRI kidney over the contralateral kidney and did not differentially enhance the kidneys of MRL-lpr over MRL/MpJ mice. Fe-PyC3A was well tolerated at the highest dose evaluated, which was a 40-fold greater than required for imaging. Thus, our data indicate that MRI using Fe-PyC3A is specific to an oxidizing kidney environment shaped by activity of myeloid immune cells and support further evaluation of Fe-PyC3A for imaging kidney inflammation.

3.
Magn Reson Med ; 91(4): 1512-1527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38098305

RESUMEN

PURPOSE: Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS: The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS: The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION: This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Ratas , Animales , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Guanidina/metabolismo , Roedores , Isquemia/diagnóstico por imagen , Isquemia/metabolismo , Amidas/metabolismo
4.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37589185

RESUMEN

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Asunto(s)
Ácido 2-Aminoadípico , Aldehídos , Ratones , Animales , Ácido 2-Aminoadípico/química , Imagen por Resonancia Magnética , Pulmón
5.
Radiology ; 309(1): e230984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37874235

RESUMEN

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Ratas , Humanos , Animales , Gadolinio/farmacocinética , Distribución Tisular , Estudios Prospectivos , Encéfalo , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos
6.
Magn Reson Med ; 89(1): 299-307, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36089834

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) MRI is promising for detecting dilute metabolites and microenvironment properties, which has been increasingly adopted in imaging disorders such as acute stroke and cancer. However, in vivo CEST MRI quantification remains challenging because routine asymmetry analysis (MTRasym ) or Lorentzian decoupling measures a combined effect of the labile proton concentration and its exchange rate. Therefore, our study aimed to quantify amide proton concentration and exchange rate independently in a cardiac arrest-induced global ischemia rat model. METHODS: The amide proton CEST (APT) effect was decoupled from tissue water, macromolecular magnetization transfer, nuclear Overhauser enhancement, guanidinium, and amine protons using the image downsampling expedited adaptive least-squares (IDEAL) fitting algorithm on Z-spectra obtained under multiple RF saturation power levels, before and after global ischemia. Omega plot analysis was applied to determine amide proton concentration and exchange rate simultaneously. RESULTS: Global ischemia induces a significant APT signal drop from intact tissue. Using the modified omega plot analysis, we found that the amide proton exchange rate decreased from 29.6 ± 5.6 to 12.1 ± 1.3 s-1 (P < 0.001), whereas the amide proton concentration showed little change (0.241 ± 0.035% vs. 0.202 ± 0.034%, P = 0.074) following global ischemia. CONCLUSION: Our study determined the labile proton concentration and exchange rate underlying the in vivo APT MRI. The significant change in the exchange rate, but not the concentration of amide proton demonstrated that the pH effect dominates the APT contrast during tissue ischemia.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Animales , Ratas , Imagen por Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno , Amidas/metabolismo , Isquemia
7.
J Am Chem Soc ; 144(36): 16553-16558, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35998740

RESUMEN

Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.


Asunto(s)
Medios de Contraste , Manganeso , Animales , Medios de Contraste/química , Hidrazinas , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Manganeso/química , Ratones
8.
J Hepatol ; 73(5): 1241-1254, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32585160

RESUMEN

MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.


Asunto(s)
Hepatopatías/diagnóstico , Hígado , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Enfermedad Crónica , Gastroenterología/métodos , Gastroenterología/tendencias , Humanos , Hígado/diagnóstico por imagen , Hígado/patología
9.
Radiology ; 296(1): 67-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343209

RESUMEN

Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/terapia , Imagen por Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Chalconas/uso terapéutico , Dieta/métodos , Modelos Animales de Enfermedad , Hígado/diagnóstico por imagen , Cirrosis Hepática/etiología , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Propionatos/uso terapéutico , Estudios Prospectivos , Ratas , Ratas Wistar
10.
Magn Reson Med ; 81(1): 645-652, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30058148

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) MRI has been used for quantitative assessment of dilute metabolites and/or pH in disorders such as acute stroke and tumor. However, routine asymmetry analysis (MTRasym ) may be confounded by concomitant effects such as semisolid macromolecular magnetization transfer (MT) and nuclear Overhauser enhancement. Resolving multiple contributions is essential for elucidating the origins of in vivo CEST contrast. METHODS: Here we used a newly proposed image downsampling expedited adaptive least-squares fitting on densely sampled Z-spectrum to quantify multipool contribution from water, nuclear Overhauser enhancement, MT, guanidinium, amine, and amide protons in adult male Wistar rats before and after global ischemia. RESULTS: Our results revealed the major contributors to in vivo T1 -normalized MTRasym (3.5 ppm) contrast between white and gray matter (WM/GM) in normal brain (-1.96%/second) are pH-insensitive macromolecular MT (-0.89%/second) and nuclear Overhauser enhancement (-1.04%/second). Additionally, global ischemia resulted in significant changes of MTRasym , being -2.05%/second and -1.56%/second in WM and GM, which are dominated by changes in amide (-1.05%/second, -1.14%/second) and MT (-0.88%/second, -0.62%/second). Notably, the pH-sensitive amine and amide effects account for nearly 60% and 80% of the MTRasym changes seen in WM and GM, respectively, after global ischemia, indicating that MTRasym is predominantly pH-sensitive. CONCLUSION: Combined amide and amine effects dominated the MTRasym changes after global ischemia, indicating that MTRasym is predominantly pH-sensitive and suitable for detecting tissue acidosis following acute stroke.


Asunto(s)
Amidas/química , Isquemia Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Acidosis , Algoritmos , Animales , Mapeo Encefálico , Humanos , Concentración de Iones de Hidrógeno , Interpretación de Imagen Asistida por Computador/métodos , Isquemia , Análisis de los Mínimos Cuadrados , Masculino , Protones , Ratas , Ratas Wistar , Procesamiento de Señales Asistido por Computador , Sustancia Blanca/diagnóstico por imagen
11.
Magn Reson Med ; 81(1): 533-541, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30260504

RESUMEN

PURPOSE: Diffusional kurtosis imaging (DKI) measures the deviation of the displacement probability from a normal distribution, complementing the data commonly acquired by diffusion MRI. It is important to elucidate the sources of kurtosis contrast, particularly in biological tissues where microscopic kurtosis (intrinsic kurtosis) and diffusional heterogeneity may co-exist. METHODS: We have developed a technique for microscopic kurtosis MRI, dubbed microscopic diffusional kurtosis imaging (µDKI), using a symmetrized double diffusion encoding (s-DDE) EPI sequence. We compared this newly developed µDKI to conventional DKI methods in both a triple compartment phantom and in vivo. RESULTS: Our results showed that whereas conventional DKI and µDKI provided similar measurements in a compartment of monosphere beads, kurtosis measured by µDKI was significantly less than that measured by conventional DKI in a compartment of mixed Gaussian pools. For in vivo brain imaging, µDKI showed small yet significantly lower kurtosis measurement in regions of the cortex, CSF, and internal capsule compared to the conventional DKI approach. CONCLUSIONS: Our study showed that µDKI is less susceptible than conventional DKI to sub-voxel diffusional heterogeneity. Our study also provided important preliminary demonstration of our technique in vivo, warranting future studies to investigate its diagnostic use in examining neurological disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen Eco-Planar , Microscopía Intravital , Algoritmos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Modelos Estadísticos , Distribución Normal , Fantasmas de Imagen , Probabilidad , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Relación Señal-Ruido
13.
Magn Reson Med ; 79(3): 1553-1558, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28686805

RESUMEN

PURPOSE: To extend the pH detection range of iopamidol-based ratiometric chemical exchange saturation transfer (CEST) MRI at sub-high magnetic field and establish quantitative renal pH MRI. METHODS: Chemical exchange saturation transfer imaging was performed on iopamidol phantoms with pH of 5.5 to 8.0 and in vivo on rat kidneys (n = 5) during iopamidol administration at a 4.7 T. Iopamidol CEST effects were described using a multipool Lorentzian model. A generalized ratiometric analysis was conducted by ratioing resolved iopamidol CEST effects at 4.3 and 5.5 ppm obtained under 1.0 and 2.0 µT, respectively. The pH detection range was established for both the standard ratiometric analysis and the proposed resolved approach. Renal pH was mapped in vivo with regional pH assessed by one-way analysis of variance. RESULTS: Good-fitting performance was observed in multipool Lorentzian resolving of CEST effects (R2 s > 0.99). The proposed approach extends the in vitro pH detection range to 5.5 to 7.5 at 4.7 T. In vivo renal pH was measured to be 7.0 ± 0.1, 6.8 ± 0.1, and 6.5 ± 0.2 for cortex, medulla and calyx, respectively (P < 0.05). CONCLUSIONS: The proposed ratiometric approach extended the iopamidol pH detection range, enabling the renal pH mapping in vivo, which is promising for pH imaging studies at sub-high or low fields with potential clinical applicability. Magn Reson Med 79:1553-1558, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Medios de Contraste/uso terapéutico , Procesamiento de Imagen Asistido por Computador/métodos , Yopamidol/uso terapéutico , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Concentración de Iones de Hidrógeno , Masculino , Fantasmas de Imagen , Ratas , Ratas Wistar
14.
Magn Reson Med ; 79(3): 1602-1608, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28733991

RESUMEN

PURPOSE: To determine the origins of in vivo magnetization transfer asymmetry contrast during acute ischemic stroke, particularly in the diffusion lesion, perfusion lesion, and their mismatch using a middle cerebral artery occlusion rat model of acute stroke. METHODS: Adult male Wistar rats underwent multiparametric MRI of diffusion, perfusion, T1 , and amide proton transfer (APT) imaging at 4.7 T following a middle cerebral artery occlusion procedure. A multipool Lorentzian model, including the nuclear Overhauser effect, magnetization transfer, direct water saturation, amine and amide chemical exchange saturation transfer effects, was applied for Z-spectrum fitting to determine the sources of in vivo magnetization transfer asymmetry following acute stroke. RESULTS: We showed that changes in amine chemical exchange saturation transfer (2 ppm) and APT (3.5 ppm) effects, particularly the APT MRI effect, dominate the commonly used magnetization transfer asymmetry analysis and hence confer pH sensitivity to APT imaging of acute stroke. Also, the nuclear Overhauser effect and magnetization transfer show small changes that counteracted each other, contributing less than 0.3% to magnetization transfer asymmetry at 3.5 ppm. Moreover, we showed that diffusion lesion had worsened acidosis from perfusion/diffusion lesion mismatch (P < 0.05). CONCLUSIONS: The study complements recent in vivo quantitative chemical exchange saturation transfer work to shed light on the sensitivity and specificity of endogenous APT MRI to tissue acidosis. Magn Reson Med 79:1602-1608, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Amidas , Animales , Modelos Animales de Enfermedad , Masculino , Protones , Ratas , Ratas Wistar
15.
AJR Am J Roentgenol ; 210(4): 720-727, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29470156

RESUMEN

OBJECTIVE: Diffusion kurtosis imaging (DKI) has emerged as a new acute stroke imaging approach, augmenting routine DWI. Although it has been shown that a diffusion lesion without kurtosis abnormality is more likely to recover after reperfusion, whereas a kurtosis lesion shows poor response, little is known about the underlying pathophysiologic profile of the kurtosis lesion versus the kurtosis lesion-diffusion lesion mismatch. MATERIALS AND METHODS: We performed multiparametric MRI, including arterial spin labeling, pH-sensitive amide proton transfer, and DKI, in a rodent model of acute stroke caused by embolic middle cerebral artery occlusion. Diffusion and kurtosis lesions were semiautomatically segmented, and multiparametric MRI indexes were compared among the kurtosis lesion, diffusion lesion, kurtosis lesion-diffusion lesion mismatch, and the contralateral normal tissue area. RESULTS: We confirmed a significant difference between diffusion lesion and kurtosis lesion volumes (mean [± SD] volume, 151 ± 65 vs 125 ± 47 mm3; p < 0.05). Although ischemic lesions have significantly reduced cerebral blood flow compared with contralateral normal tissue, we did not find a significant difference in cerebral blood flow between the kurtosis lesion and the kurtosis lesion-diffusion lesion mismatch (mean cerebral blood flow, 0.53 ± 0.10 vs 0.47 ± 0.14 mL/g of tissue per minute; p > 0.05). Of importance, the pH of the kurtosis lesion was significantly lower than that of the lesion mismatch (mean pH, 6.81 ± 0.08 vs 6.89 ± 0.09; p < 0.01). CONCLUSION: The present study confirms that DKI provides an expedient approach for refining the heterogeneous DWI lesion that is associated with graded metabolic derangement, which is promising for improving the infarction core definition and ultimately helping to guide stroke treatment.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Imagen Eco-Planar , Interpretación de Imagen Asistida por Computador , Masculino , Ratas , Ratas Wistar , Marcadores de Spin
16.
Magn Reson Med ; 78(6): 2307-2314, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29030880

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected CEST (DISC-CEST) analysis for simplified decoupling and quantification of in vivo CEST effects. METHODS: CEST MRI and relaxation measurements were carried out on a classical 2-pool creatine-gel CEST phantom and normal rat brains (N = 6) and a rat model of glioma (N = 8) at 4.7T. The proposed DISC-CEST quantification was carried out and compared with conventional MTRasym and the original three-offset method. RESULTS: We demonstrated that the DISC-CEST contrast in the phantom had much stronger correlation with MTRasym than the three-offset method, which showed substantial underestimation. In normal rat brains, the DISC-CEST approach revealed significantly stronger APT effect in gray matter and higher NOE effect in white matter. Furthermore, the APT and NOE maps derived from DISC-CEST showed significantly higher APT effect in the tumors than contralateral normal tissue but no apparent difference in NOE. CONCLUSION: The proposed DISC-CEST method, by correction of nonlinear direct water saturation effect, serves as a promising alternative to both the commonly used MTRasym and the simplistic three-offset analyses. It provides simple yet reliable in vivo CEST quantification such as APT and NOE mapping in brain tumor, which is promising for clinical translation. Magn Reson Med 78:2307-2314, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Animales , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Análisis de los Mínimos Cuadrados , Masculino , Fantasmas de Imagen , Protones , Ratas , Ratas Endogámicas F344 , Sensibilidad y Especificidad
17.
NMR Biomed ; 30(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28574615

RESUMEN

This study aimed to dissociate the intravascular and extravascular contributions to spin-echo (SE) and gradient-echo (GE) blood oxygenation level-dependent (BOLD) signals at 7 T, using dynamic diffusion-weighted MRS. We simultaneously acquired SE and GE data using a point-resolved spectroscopy sequence with diffusion weightings of 0, 600, and 1200 s/mm2 . The BOLD signals were quantified by fitting the free induction decays starting from the SE center to a mono-exponential decay function. Without diffusion weighting, BOLD signals measured with SE and GE increased by 1.6 ± 0.5% (TESE  = 40 ms) and 5.2 ± 1.4% (nominal TEGE  = 40 ms) during stimulation, respectively. With diffusion weighting, the BOLD increase during stimulation measured with SE decreased from 1.6 ± 0.5% to 1.3 ± 0.4% (P < 0.001), whereas that measured by GE was unaffected (P > 0.05); the post-stimulation undershoots in the BOLD signal time courses were largely preserved in both SE and GE measurements. These results demonstrated the feasiblity of simultaneous SE and GE measurements of BOLD signals with and without interleaved diffusion weighting. The results also indicated a predominant extravascular contribution to the BOLD signal time courses, including post-stimulation undershoots in both SE and GE measurements at 7 T.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Oxígeno/sangre , Marcadores de Spin , Animales , Simulación por Computador , Difusión , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador
18.
Neuroimage ; 141: 242-249, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27444569

RESUMEN

pH-sensitive amide proton transfer (APT) MRI provides a surrogate metabolic biomarker that complements the widely-used perfusion and diffusion imaging. However, the endogenous APT MRI is often calculated using the asymmetry analysis (MTRasym), which is susceptible to an inhomogeneous shift due to concomitant semisolid magnetization transfer (MT) and nuclear overhauser (NOE) effects. Although the intact brain tissue has little pH variation, white and gray matter appears distinct in the MTRasym image. Herein we showed that the heterogeneous MTRasym shift not related to pH highly correlates with MT ratio (MTR) and longitudinal relaxation rate (R1w), which can be reasonably corrected using the multiple regression analysis. Because there are relatively small MT and R1w changes during acute stroke, we postulate that magnetization transfer and relaxation-normalized APT (MRAPT) analysis increases MRI specificity to acidosis over the routine MTRasym image, hence facilitates ischemic lesion segmentation. We found significant differences in perfusion, pH and diffusion lesion volumes (P<0.001, ANOVA). Furthermore, MRAPT MRI depicted graded ischemic acidosis, with the most severe acidosis in the diffusion lesion (-1.05±0.29%/s), moderate acidification within the pH/diffusion mismatch (i.e., metabolic penumbra, -0.67±0.27%/s) and little pH change in the perfusion/pH mismatch (i.e., benign oligemia, -0.04±0.14%/s), providing refined stratification of ischemic tissue injury.


Asunto(s)
Amidas/química , Química Encefálica , Encéfalo/diagnóstico por imagen , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/metabolismo , Algoritmos , Amidas/metabolismo , Animales , Biomarcadores/química , Interpretación de Imagen Asistida por Computador/métodos , Campos Magnéticos , Masculino , Protones , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Anal Chem ; 88(21): 10379-10383, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27709896

RESUMEN

Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.


Asunto(s)
Química Encefálica , Isquemia Encefálica/patología , Encéfalo/patología , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Animales , Espectroscopía de Resonancia Magnética/métodos , Masculino , Fantasmas de Imagen , Protones , Ratas Wistar
20.
NMR Biomed ; 29(5): 625-30, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26918411

RESUMEN

Diffusion kurtosis imaging (DKI) can offer a useful complementary tool to routine diffusion MRI for improved stratification of heterogeneous tissue damage in acute ischemic stroke. However, its relatively long imaging time has hampered its clinical application in the emergency setting. A recently proposed fast DKI approach substantially shortens the imaging time, which may help to overcome the scan time limitation. However, to date, the sensitivity of the fast DKI protocol for the imaging of acute stroke has not been fully described. In this study, we performed routine and fast DKI scans in a rodent model of acute stroke, and compared the sensitivity of diffusivity and kurtosis indices (i.e. axial, radial and mean) in depicting acute ischemic lesions. In addition, we analyzed the contrast-to-noise ratio (CNR) between the ipsilateral ischemic and contralateral normal regions using both conventional and fast DKI methods. We found that the mean kurtosis shows a relative change of 47.1 ± 7.3% between the ischemic and contralateral normal regions, being the most sensitive parameter in revealing acute ischemic injury. The two DKI methods yielded highly correlated diffusivity and kurtosis measures and lesion volumes (R(2) ⩾ 0.90, p < 0.01). Importantly, the fast DKI method exhibited significantly higher CNR of mean kurtosis (1.6 ± 0.2) compared with the routine tensor protocol (1.3 ± 0.2, p < 0.05), with its CNR per unit time (CNR efficiency) approximately doubled when the scan time was taken into account. In conclusion, the fast DKI method provides excellent sensitivity and efficiency to image acute ischemic tissue damage, which is essential for image-guided and individualized stroke treatment.


Asunto(s)
Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Animales , Modelos Animales de Enfermedad , Masculino , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA