Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharm Stat ; 22(4): 671-691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970778

RESUMEN

For the analysis of a time-to-event endpoint in a single-arm or randomized clinical trial it is generally perceived that interpretation of a given estimate of the survival function, or the comparison between two groups, hinges on some quantification of the amount of follow-up. Typically, a median of some loosely defined quantity is reported. However, whatever median is reported, is typically not answering the question(s) trialists actually have in terms of follow-up quantification. In this paper, inspired by the estimand framework, we formulate a comprehensive list of relevant scientific questions that trialists have when reporting time-to-event data. We illustrate how these questions should be answered, and that reference to an unclearly defined follow-up quantity is not needed at all. In drug development, key decisions are made based on randomized controlled trials, and we therefore also discuss relevant scientific questions not only when looking at a time-to-event endpoint in one group, but also for comparisons. We find that different thinking about some of the relevant scientific questions around follow-up is required depending on whether a proportional hazards assumption can be made or other patterns of survival functions are anticipated, for example, delayed separation, crossing survival functions, or the potential for cure. We conclude the paper with practical recommendations.


Asunto(s)
Neoplasias , Proyectos de Investigación , Humanos , Estudios de Seguimiento , Oncología Médica , Neoplasias/tratamiento farmacológico , Factores de Tiempo , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Pharm Stat ; 21(1): 150-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605168

RESUMEN

An addendum of the ICH E9 guideline on Statistical Principles for Clinical Trials was released in November 2019 introducing the estimand framework. This new framework aims to align trial objectives and statistical analyses by requiring a precise definition of the inferential quantity of interest, that is, the estimand. This definition explicitly accounts for intercurrent events, such as switching to new anticancer therapies for the analysis of overall survival (OS), the gold standard in oncology. Traditionally, OS in confirmatory studies is analyzed using the intention-to-treat (ITT) approach comparing treatment groups as they were initially randomized regardless of whether treatment switching occurred and regardless of any subsequent therapy (treatment-policy strategy). Regulatory authorities and other stakeholders often consider ITT results as most relevant. However, the respective estimand only yields a clinically meaningful comparison of two treatment arms if subsequent therapies are already approved and reflect clinical practice. We illustrate different scenarios where subsequent therapies are not yet approved drugs and thus do not reflect clinical practice. In such situations the hypothetical strategy could be more meaningful from patient's and prescriber's perspective. The cross-industry Oncology Estimand Working Group (www.oncoestimand.org) was initiated to foster a common understanding and consistent implementation of the estimand framework in oncology clinical trials. This paper summarizes the group's recommendations for appropriate estimands in the presence of treatment switching, one of the key intercurrent events in oncology clinical trials. We also discuss how different choices of estimands may impact study design, data collection, trial conduct, analysis, and interpretation.


Asunto(s)
Neoplasias , Cambio de Tratamiento , Interpretación Estadística de Datos , Humanos , Oncología Médica , Neoplasias/tratamiento farmacológico , Proyectos de Investigación
3.
BMC Med Res Methodol ; 20(1): 168, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586271

RESUMEN

BACKGROUND: Causal effect estimation with observational data is subject to bias due to confounding, which is often controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle missing values in covariates. METHOD: Several approaches have been proposed for handling covariate missingness, including multiple imputation (MI), multiple imputation with missingness pattern (MIMP), and treatment mean imputation. However, there are other potentially useful approaches that have not been evaluated, including single imputation (SI) + prediction error (PE), SI + PE + parameter uncertainty (PU), and Generalized Boosted Modeling (GBM), which is a nonparametric approach for estimating propensity scores in which missing values are automatically handled in the estimation using a surrogate split method. To evaluate the performance of these approaches, a simulation study was conducted. RESULTS: Results suggested that SI + PE, SI + PE + PU, MI, and MIMP perform almost equally well and better than treatment mean imputation and GBM in terms of bias; however, MI and MIMP account for the additional uncertainty of imputing the missingness. CONCLUSIONS: Applying GBM to the incomplete data and relying on the surrogate split approach resulted in substantial bias. Imputation prior to implementing GBM is recommended.


Asunto(s)
Modelos Estadísticos , Proyectos de Investigación , Sesgo , Causalidad , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Puntaje de Propensión
4.
Prev Sci ; 15(4): 516-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23722619

RESUMEN

Random assignment to groups is the foundation for scientifically rigorous clinical trials. But assignment is challenging in group randomized trials when only a few units (schools) are assigned to each condition. In the DRSR project, we assigned 39 rural Pennsylvania and Ohio schools to three conditions (rural, classic, control). But even with 13 schools per condition, achieving pretest equivalence on important variables is not guaranteed. We collected data on six important school-level variables: rurality, number of grades in the school, enrollment per grade, percent white, percent receiving free/assisted lunch, and test scores. Key to our procedure was the inclusion of school-level drug use data, available for a subset of the schools. Also, key was that we handled the partial data with modern missing data techniques. We chose to create one composite stratifying variable based on the seven school-level variables available. Principal components analysis with the seven variables yielded two factors, which were averaged to form the composite inflate-suppress (CIS) score which was the basis of stratification. The CIS score was broken into three strata within each state; schools were assigned at random to the three program conditions from within each stratum, within each state. Results showed that program group membership was unrelated to the CIS score, the two factors making up the CIS score, and the seven items making up the factors. Program group membership was not significantly related to pretest measures of drug use (alcohol, cigarettes, marijuana, chewing tobacco; smallest p > .15), thus verifying that pretest equivalence was achieved.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Población Rural , Instituciones Académicas , Trastornos Relacionados con Sustancias/prevención & control , Humanos , Ohio , Pennsylvania
5.
Stat Biopharm Res ; 12(4): 427-437, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34191975

RESUMEN

Abstract-Coronavirus disease 2019 (COVID-19) outbreak has rapidly evolved into a global pandemic. The impact of COVID-19 on patient journeys in oncology represents a new risk to interpretation of trial results and its broad applicability for future clinical practice. We identify key intercurrent events (ICEs) that may occur due to COVID-19 in oncology clinical trials with a focus on time-to-event endpoints and discuss considerations pertaining to the other estimand attributes introduced in the ICH E9 addendum. We propose strategies to handle COVID-19 related ICEs, depending on their relationship with malignancy and treatment and the interpretability of data after them. We argue that the clinical trial objective from a world without COVID-19 pandemic remains valid. The estimand framework provides a common language to discuss the impact of COVID-19 in a structured and transparent manner. This demonstrates that the applicability of the framework may even go beyond what it was initially intended for.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA