Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Chem Phys ; 137(16): 161101, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-23126688

RESUMEN

By employing the vacuum ultraviolet (VUV) laser velocity-map imaging photoelectron (VUV-VMI-PE) method, we have obtained a vibrationally resolved photoelectron spectrum of gaseous propargyl radical [C(3)H(3)(X(2)B(1))] in the energy range of 0-4600 cm(-1) above its ionization energy. The cold C(3)H(3) radicals were produced from a supersonically cooled radical beam source based on 193 nm ArF photodissociation of C(3)H(3)Cl. The VUV-VMI-PE spectrum of C(3)H(3) thus obtained reveals a Franck-Condon factor (FCF) pattern with a highly dominant origin band along with weak vibrational progressions associated with excitations of the C-C ν(5)(+)(a(1)) and C≡C ν(3)(+)(a(1)) symmetric stretching modes and the CCH ν(7)(+)(b(1)) out-of-plane bending mode of C(3)H(3)(+)(X(1)A(1)). The ν(5)(+)(a(1)) vibrational frequency of 1120 cm(-1) determined in the present study is lower than the value deduced from the recent Ar-tagged infrared photodissociation study by 102 cm(-1), confirming the highly accurate vibrational frequency predictions obtained by the most recent state-of-the-art ab initio quantum calculations. The observation of the FCF disallowed ν(7)(+)(b(1)) mode is indicative of vibronic interactions. The discrepancy observed between the FCF pattern determined in the present study and that predicted by a recent high-level quantum theoretical investigation can be taken as evidence that the potential energy surfaces used in the latter theoretical study are in need of improvement in order to provide a reliable FCF prediction for the C(3)H(3)/C(3)H(3)(+) photoionization system.

2.
J Chem Phys ; 136(13): 134302, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22482547

RESUMEN

The time-slice velocity-map ion imaging and the resonant four-wave mixing techniques are combined to study the photodissociation of NO in the vacuum ultraviolet (VUV) region around 13.5 eV above the ionization potential. The neutral atoms, i.e., N((2)D(o)), O((3)P(2)), O((3)P(1)), O((3)P(0)), and O((1)D(2)), are probed by exciting an autoionization line of O((1)D(2)) or N((2)D(o)), or an intermediate Rydberg state of O((3)P(0,1,2)). Old and new autoionization lines of O((1)D(2)) and N((2)D(o)) in this region have been measured and newer frequencies are given for them. The photodissociation channels producing N((2)D(o)) + O((3)P), N((2)D(o)) + O((1)D(2)), N((2)D(o)) + O((1)S(0)), and N((2)P(o)) + O((3)P) have all been identified. This is the first time that a single VUV photon has been used to study the photodissociation of NO in this energy region. Our measurements of the angular distributions show that the recoil anisotropy parameters (ß) for all the dissociation channels except for the N((2)D(o)) + O((1)S(0)) channel are minus at each of the wavelengths used in the present study. Thus direct excitation of NO by a single VUV photon in this energy region leads to excitation of states with Σ or Δ symmetry (ΔΩ = ±1), explaining the observed perpendicular transition.

3.
J Chem Phys ; 135(7): 071101, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21861546

RESUMEN

We demonstrate that the vacuum ultraviolet (VUV) photodissociation dynamics of N(2) and CO(2) can be studied using VUV photoionization with time-sliced velocity-mapped ion imaging (VUV-PI-VMI) detection. The VUV laser light is produced by resonant sum frequency mixing in Kr. N(2) is used to show that when the photon energy of the VUV laser is above the ionization energy of an allowed transition of one of the product atoms it can be detected and characterized as the wavelength is varied. In this case a ß parameter = 0.57 for the N((2)D°) was measured after exciting N(2)(o(1)Π(u), v(') = 2, J(') = 2) ← N(2)(X(1)Σ(g) (+), v(") = 0, J(") = 1). Studies with CO(2) show that when there is no allowed transition, an autoionization resonance can be used for the detection of a product atom. In this case it is shown for the first time that the O((1)D) atom is produced with CO((1)Σ(+)) at 92.21 nm. These results indicate that the VUV laser photodissociation combined with the VUV-PI-VMI detection is a viable method for studying the one-photon photodissociation from the ground state of simple molecules in the extreme ultraviolet and VUV spectral regions.

4.
J Chem Phys ; 135(13): 134319, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21992317

RESUMEN

The predissociation of N(2) from the rotational levels in the o(1)∏(u) (v(') = 2) and b(') (1)Σ(u) (v(') = 8) bands has been studied in the wavenumber (or energy) range from 109 350 cm(-1) (13.5577 eV) to 109 580 cm(-1) (13.5862 eV) by time-sliced velocity-mapped imaging technique with VUV photoionization detection of the fragments. These levels were excited from the ground state of N(2) (X(1)Σ(g) (+), v(") = 0) levels using an unfocused vacuum ultraviolet (VUV) laser via a one-photon process. The same VUV laser is used to ionize the metastable N ((2)D(o)) produced from the predissociation process and the time-sliced velocity-mapped imaging technique is used to determine their velocity and angular distributions. Two different theoretical methods developed, respectively, by Kim et al. [J. Chem. Phys. 125, 133316 (2006) and Zande [J. Chem. Phys. 107, 9447 (1997)] were used to calculate the anisotropic parameters for the predissociation to the channel N((4)S(o)) + N((2)D(o)) to compare with the observed value for each of the rotational levels. Very good agreement with the experimental results was obtained for both methods. Possible predissociation mechanisms were predicted from the measurements and calculations.

5.
J Chem Phys ; 135(22): 224304, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168691

RESUMEN

By employing the vacuum ultraviolet (VUV) laser velocity-map imaging (VMI) photoelectron scheme to discriminate energetic photoelectrons, we have measured the VUV-VMI-threshold photoelectrons (VUV-VMI-TPE) spectra of propargyl radical [C(3)H(3)(X̃(2)B(1))] near its ionization threshold at photoelectron energy bandwidths of 3 and 7 cm(-1) (full-width at half-maximum, FWHM). The simulation of the VUV-VMI-TPE spectra thus obtained, along with the Stark shift correction, has allowed the determination of a precise value 70 156 ± 4 cm(-1) (8.6982 ± 0.0005 eV) for the ionization energy (IE) of C(3)H(3). In the present VMI-TPE experiment, the Stark shift correction is determined by comparing the VUV-VMI-TPE and VUV laser pulsed field ionization-photoelectron (VUV-PFI-PE) spectra for the origin band of the photoelectron spectrum of the X̃(+)-X̃ transition of chlorobenzene. The fact that the FWHMs for this origin band observed using the VUV-VMI-TPE and VUV-PFI-PE methods are nearly the same indicates that the energy resolutions achieved in the VUV-VMI-TPE and VUV-PFI-PE measurements are comparable. The IE(C(3)H(3)) value obtained based on the VUV-VMI-TPE measurement is consistent with the value determined by the VUV laser PIE spectrum of supersonically cooled C(3)H(3)(X̃(2)B(1)) radicals, which is also reported in this article.

6.
Rev Sci Instrum ; 79(12): 123106, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19123544

RESUMEN

By coupling a comprehensive tunable vacuum ultraviolet (VUV) laser system to a velocity-mapped ion imaging apparatus, we show that high-resolution high-n Rydberg tagging time-of-flight (TOF) measurements of nascent atomic photofragments formed by laser photodissociation can be made using single-photon VUV laser photoexcitation. To illustrate this single-photon Rydberg tagging TOF method, we present here the results of the VUV laser high-n Rydberg tagging TOF measurements of O((3)P(2)) and S((3)P(2)) formed in the photodissociation of SO(2) and CS(2) at 193.3 and 202.3 nm, respectively. These results are compared to those obtained by employing the VUV laser photoionization time-sliced velocity-mapped ion imaging technique. The fact that the kinetic energy resolutions achieved in the VUV laser high-n Rydberg tagging TOF measurements of O and S atoms are found to be higher than those observed in the VUV laser photoionization, time-sliced velocity-mapped ion imaging studies show that the single-photon VUV laser high-n Rydberg tagging TOF method is useful and complementary to state-of-the-art time-sliced velocity-mapped ion imaging measurements of heavier atomic photofragments, such as O and S atoms. Furthermore, the general agreement observed between the VUV laser high-n Rydberg tagging TOF and velocity-mapped ion imaging experiments supports the conclusion that the lifetimes of the tagged Rydberg states of O and S atoms are sufficiently long to allow the reliable determination of state-resolved UV photodissociation cross sections of SO(2) and CS(2) by using the VUV laser high-n Rydberg tagging TOF method.

7.
J Chem Phys ; 128(1): 014305, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-18190194

RESUMEN

The photoionization efficiency (PIE) and pulsed field ionization-photoion (PFI-PI) spectra for sulfur atoms S(3P2,1,0) and S(1D2) resulting from the 193.3 nm photodissociation of CS2 have been measured using tunable vacuum ultraviolet (vuv) laser radiation in the frequency range of 82 750-83 570 cm(-1). The PIE spectrum of S(3P2,1,0) near their ionization threshold exhibits steplike structures. On the basis of the velocity-mapped ion-imaging measurements, four strong autoionizing peaks observed in the PIE measurement in this frequency range have been identified to originate from vuv excitation of S(1D2). The PFI-PI measurement reveals over 120 previously unidentified new Rydberg lines. They have been assigned as Rydberg states [3p3(4S composite function nd3 D composite function (n=17-64)] converging to the ground ionic state S+(4S composite function) formed by vuv excitations of S(3P2,1,0). The converging limits of these Rydberg series have provided more accurate values, 82 985.43+/-0.05, 83 162.94+/-0.05, and 83 559.04+/-0.05 cm(-1) for the respective ionization energies of S(3P0), S(3P1), and S(3P2) to form S+(4S composite function). The relative intensities of the PFI-PI bands for S(3P0), S(3P1), and S(3P2) have been used to determine the branching ratios for these fine structure states, S(3P0):S(3P1):S(3P2)=1.00:1.54:3.55, produced by photodissociation of CS2 at 193.3 nm.

8.
J Chem Phys ; 128(8): 084303, 2008 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18315042

RESUMEN

The photoionization efficiency (PIE) spectra of metastable sulfur (S) atoms in the 1 D and 1 S states have been recorded in the 73 350-84 950 cm(-1) frequency range by using a velocity-mapped ion imaging apparatus that uses a tunable vacuum ultraviolet laser as the ionization source. The S(1 D) and S(1 S) atoms are produced by the 193 nm photodissociation of CS2. The observed PIE spectra of S(1 D) and S(1 S) shows 35 autoionizing resonances with little or no contribution from direct photoionization into the S+(4S 3/2)+e(-) ionization continuum. Velocity-mapped ion images of the S+ at the individual autoionizing Rydberg resonances are used to distinguish whether the lower state of the resonance originates from the 1 D, 1 S, or 3P states. The analysis and assignment of the Rydberg peaks revealed 22 new Rydberg states that were not previously known. The autoionization lifetimes tau of the Rydberg states are derived from the linewidths by fitting the lines with the Fano formula. Deviations from the scaling law of tau(n*) proportional to, n*3, where n* is the effective quantum number of the Rydberg state, are observed. This observation is ascribed to perturbations by nearby triplet Rydberg states, which shorten the autoionization lifetimes of the singlet Rydberg levels.

9.
Phys Chem Chem Phys ; 8(25): 3000-6, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16880913

RESUMEN

The title reaction was investigated under crossed-beam conditions at three different collision energies, E(c) = 8.4, 2.76 and 1.46 kcal mol(-1). The combination of using a (2 + 1) resonance-enhanced multiphoton ionization for tagging state-specific CD(3) products and exploiting a time-sliced velocity imaging for ion detection allows us to reveal the coincident information of the two product pairs in a state-correlated manner. The pair-correlated results are reported for the two product vibrators -- (v(2) = 0, v'), (v(2) = 1, v'), (v(2) = 2, v') and (v(2) = 3, v')-and the dynamics attributes we examined include product state distributions, energy disposals and angular distributions. Together with our earlier communications, a rather complete picture of the correlated dynamics of the title reaction emerges. One of the major findings, the anti-correlated excitations of the two product vibrators at all four energies of this study, can qualitatively be understood by kinematics arguments.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Moleculares , Fotones , Análisis Espectral/métodos , Simulación por Computador , Estadística como Asunto
10.
J Chem Phys ; 124(10): 104309, 2006 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-16542081

RESUMEN

The product pair correlation of the title reaction was measured with rotational selection for both the vibrationally ground CD3(nu = 0) and umbrella-excited CD3(nu2 = 2) products. A striking linear relationship was found between the rotational energy of the selected CD3 product and the correlated kinetic energy release (or the average vibrational energy of the DF coproduct). Such a linearly correlated (or anticorrelated) dependence appears to be stronger for CD3(nu2 = 2,N) than for CD3(nu = 0,N). The mechanistic implication of the observation is that the rotational motion N of the CD3 product tends to lie antiparallel to the orbital angular momentum l' of the two departing products. The dependency on the K quantum number--the projection of N on the top axis--is, on the other hand, less significant yet noticeable.

11.
J Chem Phys ; 124(3): 034309, 2006 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-16438585

RESUMEN

Employing a high-resolution (velocity resolution deltanu/nu<1.5%) time-sliced ion velocity imaging apparatus, we have examined the photodissociation of CH2BrCl in the photon energy range of 448.6-618.5 kJ/mol (193.3-266.6 nm). Precise translational and angular distributions for the dominant Br(2P32) and Br(2P12) channels have been determined from the ion images observed for Br(2P32) and Br(2P12). In confirmation with the previous studies, the kinetic-energy distributions for the Br(2P12) channel are found to fit well with one Gaussian function, whereas the kinetic- energy distributions for the Br(2P32) channel exhibit bimodal structures and can be decomposed into a slow and a fast Gaussian component. The observed kinetic-energy distributions are consistent with the conclusion that the formation of the Br(2P32) and Br(2P12) channels takes place on a repulsive potential-energy surface, resulting in a significant fraction (0.40-0.47) of available energy to appear as translational energy for the photo fragments. On the basis of the detailed kinetic-energy distributions and anisotropy parameters obtained in the present study, together with the specific features and relative absorption cross sections of the excited 2A', 1A", 3A', 4A', and 2A" states estimated in previous studies, we have rationalized the dissociation pathways of CH2BrCl in the A-band, leading to the formation of the Br(2P32) and Br(2P12) channels. The analysis of the ion images observed at 235 nm for Cl(2P(32,12)) provides strong evidence that the formation of Cl mainly arises from the secondary photodissociation process CH2Cl + hnu --> CH2 + Cl.

12.
Science ; 300(5621): 966-9, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12738861

RESUMEN

When a chemical reaction forms two molecular products, even if the state-resolved differential cross section (DCS) for each product is obtained individually, the coincident attributes of the coproducts are still lacking. We exploit a method that provides coincidence information by measuring the state-resolved, pair-correlated DCS. Exemplified by the reaction F + CD4 --> DF + CD3, a time-sliced ion velocity imaging technique was used to measure the velocity distribution of a state-selected CD3 product and to reveal the information of the coincident DF in a state-correlated manner. The correlation of different product state pairs shows a striking difference, which opens up a new way to unravel the complexity of a polyatomic reaction.

13.
J Chem Phys ; 120(13): 5863-6, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15267466

RESUMEN

The title reaction was studied in a crossed-beam experiment by imaging of state-selected products. The rotational state selection of the CD(3) products was achieved using (2+1) resonance-enhanced multiphoton ionization. The coincident information on the DF coproducts was revealed in a state-resolved manner from time-sliced velocity map images. Significant dependences of both the correlated differential cross sections and the DF vibrational branching ratios on the "tagged" CD(3) rotation states were found. The dynamical implications of one of the major findings are discussed.

14.
J Chem Phys ; 121(2): 813-8, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15260609

RESUMEN

The title reaction was investigated under crossed-beam conditions at collisional energies ranging from about 0.4 to 7.5 kcal/mol. Product velocity distributions were measured by a time-sliced, velocity-map imaging technique to explicitly account for the density-to-flux transformation factors. Both the state-resolved, pair-correlated excitation functions and vibrational branching ratios are presented for the two isotopic product channels. An intriguing resonance tunneling mechanism occurring near the reaction threshold for the HF+CD3 product channel is surmized, which echoes the reactive resonances found previously for the F+HD-->HF+D reaction and more recently for the F+CH4 reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA