Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415464

RESUMEN

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Asunto(s)
Predominio Ocular , Corteza Visual , Animales , Ratas , Ratones , Ratas Long-Evans , Ratones Endogámicos C57BL , Corteza Visual/fisiología , Neuronas/fisiología
2.
Cereb Cortex ; 33(16): 9599-9615, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415460

RESUMEN

We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.


Asunto(s)
Cuerpos Geniculados , Corteza Visual , Ratas , Animales , Cuerpos Geniculados/anatomía & histología , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Campos Visuales , Ratas Wistar
3.
Cereb Cortex ; 31(8): 3788-3803, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33772553

RESUMEN

The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.


Asunto(s)
Pulvinar/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Lateralidad Funcional/fisiología , Inmunohistoquímica , Macaca mulatta , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Neuroimagen , Pulvinar/anatomía & histología , Tálamo/fisiología , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología
4.
J Comp Neurol ; 531(6): 681-700, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740976

RESUMEN

The pulvinar in the macaque monkey contains three divisions: the medial pulvinar (PM), the lateral pulvinar (PL), and the inferior pulvinar (PI). Anatomical studies have shown that connections of PM are preferentially distributed to higher association areas, those of PL are biased toward the ventral visual pathway, and those of PI are biased with the dorsal visual pathway. To study functional connections of the pulvinar at mesoscale, we used a novel method called INS-fMRI (infrared neural stimulation and functional magnetic resonance imaging). This method permits studies and comparisons of multiple pulvinar networks within single animals. As previously revealed, stimulations of different sites in PL and PI produced topographically organized focal activations in visual areas V1, V2, and V3. In contrast, PM stimulation elicited little or diffuse response. The relative activations of areas V1, V2, V3A, V3d, V3v, V4, MT, and MST revealed that connections of PL are biased to ventral pathway areas, and those of PI are biased to dorsal areas. Different statistical values of activated blood-oxygen-level-dependent responses produced the same center of activation, indicating stability of connectivity; it also suggests possible dynamics of broad to focal responses from single stimulation sites. These results demonstrate that infrared neural stimulation-induced connectivity is largely consistent with previous anatomical connectivity studies, thereby demonstrating validity of our novel method. In addition, it suggests additional interpretations of functional connectivity to complement anatomical studies.


Asunto(s)
Pulvinar , Corteza Visual , Animales , Macaca , Pulvinar/fisiología , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Vías Visuales/diagnóstico por imagen , Vías Visuales/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología
5.
Front Neuroanat ; 15: 751810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720891

RESUMEN

Because at least some squirrel monkeys lack ocular dominance columns (ODCs) in the striate cortex (V1) that are detectable by cytochrome oxidase (CO) histochemistry, the functional importance of ODCs on stereoscopic 3-D vision has been questioned. However, conventional CO histochemistry or trans-synaptic tracer study has limited capacity to reveal cortical functional architecture, whereas the expression of immediate-early genes (IEGs), c-FOS and ZIF268, is more directly responsive to neuronal activity of cortical neurons to demonstrate ocular dominance (OD)-related domains in V1 following monocular inactivation. Thus, we wondered whether IEG expression would reveal ODCs in the squirrel monkey V1. In this study, we first examined CO histochemistry in V1 of five squirrel monkeys that were subjected to monocular enucleation or tetrodotoxin (TTX) treatment to address whether there is substantial cross-individual variation as reported previously. Then, we examined the IEG expression of the same V1 tissue to address whether OD-related domains are revealed. As a result, staining patterns of CO histochemistry were relatively homogeneous throughout layer 4 of V1. IEG expression was also moderate and homogeneous throughout layer 4 of V1 in all cases. On the other hand, the IEG expression was patchy in accordance with CO blobs outside layer 4, particularly in infragranular layers, although they may not directly represent OD clusters. Squirrel monkeys remain an exceptional species among anthropoid primates with regard to OD organization, and thus are potentially good subjects to study the development and function of ODCs.

6.
Front Neuroanat ; 15: 629473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679337

RESUMEN

Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bß (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA