RESUMEN
Research background: The processing method generally affects the toxicity and biological activity of aged sorghum vinegar. This study investigates the changes in the intermediate Maillard reaction products of sorghum vinegar during ageing and the in vivo hepatoprotective effects of pure melanoidin obtained from it. Experimental approach: High-performance liquid chromatography (HPLC) and fluorescence spectrophotometry were utilized to quantify intermediate Maillard reaction products. The CCl4-induced liver damage in rats was used to evaluate the protective role of pure melanoidin in rat liver. Results and conclusions: Compared with the initial concentration, the 18-month ageing process caused a 1.2- to 3.3-fold increase in the concentrations of intermediate Maillard reaction products, i.e. 5-hydroxymethylfurfural (HMF), 5-methylfurfural (MF), methyglyoxal (MGO), glyoxal (GO) and advanced glycation end products (AGEs). The concentrations of HMF in the aged sorghum vinegar were 6.1-fold higher than the 450 µM limit standard for honey, implying the need for shortening the ageing of the vinegar in practice for safety concerns. Pure melanoidin (Mr>3.5 kDa) demonstrated significant protective effects against CCl4-induced rat liver damage, as evidenced by normalized serum biochemical parameters (transaminases and total bilirubin), suppressing hepatic lipid peroxidation and reactive oxygen species, as well as increasing glutathione amount and restoring antioxidant enzyme activities. Histopathological analysis revealed that melanoidin in vinegar reduced cell infiltration and vacuolar hepatocyte necrosis in rat liver. The findings demonstrated that a shortened ageing process should be considered in practice to ensure the safety of aged sorghum vinegar. Vinegar melanoidin is a potential alternative for the prevention of hepatic oxidative damage. Novelty and scientific contribution: This study demonstrates that the manufacturing process had a profound influence on the generation of vinegar intermediate Maillard reaction products. In particular, it revealed the in vivo hepatoprotective effect of pure melanoidin from aged sorghum vinegar, and provides insight into the in vivo biological activity of melanoidin.
RESUMEN
This study aims to use metal ion coordinating method to improve the bioactivity and anti-hydrolysis ability of bioactive peptides. We demonstrated that zinc (Zn) coordination (10:1 mass ratio of peptide to Zn, pH 6.8, 37 °C) induced assembly of oat peptides, improved pancreatic lipase (PL) inhibitory activity by 30.4-36.8 % and anti-hydrolysis ability against intestinal proteases by 26.5-38.2 %; meanwhile, the peptide-Zn complex drastically reduced the PL affinity to the substrate. Detailed mechanism analysis showed that the high hydrophobicity (276 of fluorescent intensity) and dense eutectic structure of peptide-Zn complexes caused the hard hydrolysis of complexed peptides by proteases; in particular, the neutralized surface charges (â¼-3.6 mV) of complexes imparted the peptide-Zn complex high affinity towards PL (-22.3 mV) thus robust PL inhibitory activity. These findings deepened our understanding of the interaction of peptides with metal elements and set the groundwork for the enhancement and protection of bioactive peptides.