Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849556

RESUMEN

Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2- species, which cap the MXene surface with an O-B-O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g-1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.

2.
Nano Lett ; 23(18): 8468-8473, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37669544

RESUMEN

Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly, the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggests that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers.

3.
Angew Chem Int Ed Engl ; 63(20): e202320091, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38488855

RESUMEN

Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ=1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ=1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of a two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 µV/K and a power factor of 10 µW/m ⋅ K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V ⋅ s in both Ag4TTHQ and Ag4TTBQ.

4.
J Am Chem Soc ; 145(4): 2430-2438, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661343

RESUMEN

Electrically conductive coordination polymers and metal-organic frameworks are attractive emerging electroactive materials for (opto-)electronics. However, developing semiconducting coordination polymers with high charge carrier mobility for devices remains a major challenge, urgently requiring the rational design of ligands and topological networks with desired electronic structures. Herein, we demonstrate a strategy for synthesizing high-mobility semiconducting conjugated coordination polymers (c-CPs) utilizing novel conjugated ligands with D2h symmetry, namely, "4 + 2" phenyl ligands. Compared with the conventional phenyl ligands with C6h symmetry, the reduced symmetry of the "4 + 2" ligands leads to anisotropic coordination in the formation of c-CPs. Consequently, we successfully achieve a single-crystalline three-dimensional (3D) c-CP Cu4DHTTB (DHTTB = 2,5-dihydroxy-1,3,4,6-tetrathiolbenzene), containing orthogonal ribbon-like π-d conjugated chains rather than 2D conjugated layers. DFT calculation suggests that the resulting Cu4DHTTB exhibits a small band gap (∼0.2 eV), strongly dispersive energy bands near the Fermi level with a low electron-hole reduced effective mass (∼0.2m0*). Furthermore, the four-probe method reveals a semiconducting behavior with a decent conductivity of 0.2 S/cm. Thermopower measurement suggests that it is a p-type semiconductor. Ultrafast terahertz photoconductivity measurements confirm Cu4DHTTB's semiconducting nature and demonstrate the Drude-type transport with high charge carrier mobilities up to 88 ± 15 cm2 V-1 s-1, outperforming the conductive 3D coordination polymers reported till date. This molecular design strategy for constructing high-mobility semiconducting c-CPs lays the foundation for achieving high-performance c-CP-based (opto-)electronics.

5.
Opt Express ; 31(11): 17769-17781, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381502

RESUMEN

Hybrid waveguides consisting of two-dimensional layered materials pad on the surface of optical waveguides suffer from a nonuniform and loose contact between the two-dimensional material and the waveguide, which can reduce the efficiency of the pulsed laser. Here, we present high-performance passively Q-switched pulsed lasers in three distinct structures of monolayer graphene-Nd:YAG hybrid waveguides irradiated by energetic ions. The ion irradiation enables the monolayer graphene a tight contact and strong coupling with the waveguide. As a result, Q-switched pulsed lasers with narrow pulse width and high repetition rate are obtained in three designed hybrid waveguides. The narrowest pulse width is 43.6 ns, provided by the ion-irradiated Y-branch hybrid waveguide. This study paves the way toward developing on-chip laser sources based on hybrid waveguides by using ion irradiation.

6.
Opt Express ; 31(16): 26451-26462, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710506

RESUMEN

Photonic integrated circuits require photodetectors that operate at room temperature with sensitivity at telecom wavelengths and are suitable for integration with planar complementary-metal-oxide-semiconductor (CMOS) technology. Silicon hyperdoped with deep-level impurities is a promising material for silicon infrared detectors because of its strong room-temperature photoresponse in the short-wavelength infrared region caused by the creation of an impurity band within the silicon band gap. In this work, we present the first experimental demonstration of lateral Te-hyperdoped Si PIN photodetectors operating at room temperature in the optical telecom bands. We provide a detailed description of the fabrication process, working principle, and performance of the photodiodes, including their key figure of merits. Our results are promising for the integration of active and passive photonic elements on a single Si chip, leveraging the advantages of planar CMOS technology.

7.
Opt Lett ; 48(3): 787-790, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723589

RESUMEN

In this Letter, we report a tailored 532/1064-nm demultiplexer based on a multimode interference (MMI) coupler with an efficiency of 100%. The device structure is designed according to the self-imaging principle, and the propagation and the wavelength division performance are simulated by the beam propagation method. The demultiplexer is fabricated in a y-cut LiNbO3 crystal by femtosecond laser direct writing (FLDW) combined with the ion implantation technique. The end-face coupling system is used to measure the near field intensity distribution, and the spectra collected from the output ports are obtained by spectrometers. The simulated and the experimental results indicate that the customized demultiplexer in the LiNbO3 crystal presents excellent wavelength division performance operating at 532 nm and 1064 nm. This work demonstrates the application potential of FLDW technology for developing miniaturized photonic components and provides a new strategy for fabricating high-efficiency integrated wavelength division devices on an optical monocrystalline platform.

8.
Nano Lett ; 22(3): 1374-1381, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35060737

RESUMEN

The proliferation of lithium (Li) dendrites stemming from uncontrollable Li deposition seriously limits the practical application of Li metal batteries. The regulation of uniform Li deposition is thus a prerequisite for promoting a stable Li metal anode. Herein, a commercial lithiophilic skeleton of soybean protein fiber (SPF) is introduced to homogenize the Li-ion flux and induce the biomimetic Li growth behavior. Especially, the SPF can promote the formation of a LiF-nanocrystal-enriched interface upon cycling, resulting in low interfacial impedance and rapid charge transfer kinetics. Finally, the SPF-mediated Li metal anode can achieve high Coulombic efficiency of 98.7% more than 550 cycles and a long-term lifespan over 3400 h (∼8500 cycles) in symmetric tests. Furthermore, the practical pouch cell modified with SPF can maintain superior electrochemical performance over 170 cycles under a low N/P ratio and high mass loading of the cathode.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Nanopartículas , Proteínas de Soja , Electrodos , Litio/química , Proteínas de Soja/química
9.
Angew Chem Int Ed Engl ; 62(46): e202310937, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691002

RESUMEN

Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C-O- groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g-1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal-organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices.

10.
Small ; 18(50): e2107168, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257826

RESUMEN

High dielectric constant materials are of particular current interests as indispensable components in transistors, capacitors, etc. In this context, there are emerging trends to exploit defect engineering in dielectric ceramics for enhancing the performance. However, demonstrations of similar high dielectric performance in integration-compatible crystalline films are rare. Herein, such a breakthrough via the functionalization of donor-acceptor dipoles by compositional tuning in GaCu codoped ZnO films is reported. The dielectric constant reaches ~200 at 1 kHz and the optical transmittance in visible light reaches ~80%. Importantly, by analyzing the impedance spectroscopy data, prominent relaxation mechanisms in correlation with the dipole properties, enabling consistent explanations of the dielectric constant as a function of frequency are discriminated. The atomistic nature of the dipoles is revealed by the systematic X-ray spectroscopy analysis. Spectacularly, similar trends for the dielectric properties are observed, while synthesizing samples by pulsed laser deposition and ion implantation, indicating the general character of the phenomena.

11.
Opt Express ; 30(13): 23463-23474, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225025

RESUMEN

The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.

12.
Macromol Rapid Commun ; 43(20): e2200392, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35678742

RESUMEN

Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl2 at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.

13.
J Am Chem Soc ; 143(5): 2353-2360, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502182

RESUMEN

Defects have been observed in graphene and are expected to play a key role in its optical, electronic, and magnetic properties. However, because most of the studies focused on the structural characterization, the implications of topological defects on the physicochemical properties of graphene remain poorly understood. Here, we demonstrate a bottom-up synthesis of three novel nanographenes (1-3) with well-defined defects in which seven-five-seven (7-5-7)-membered rings were introduced to their sp2 carbon frameworks. From the X-ray crystallographic analysis, compound 1 adopts a nearly planar structure. Compound 2, with an additional five-membered ring compared to 1, possesses a slightly saddle-shaped geometry. Compound 3, which can be regarded as the "head-to-head" fusion of 1 with two bonds, features two saddles connected together. The resultant defective nanographenes 1-3 were well-investigated by UV-vis absorption, cyclic voltammetry, and time-resolved absorption spectra and further corroborated by density functional theory (DFT) calculations. Detailed experimental and theoretical investigations elucidate that these three nanographenes 1-3 exhibit an anti-aromatic character in their ground states and display a high stability under ambient conditions, which contrast with the reported unstable biradicaloid nanographenes that contain heptagons. Our work reported herein offers insights into the understanding of structure-related properties and enables the control of the electronic structures of expanded nanographenes with atomically precise defects.

14.
J Am Chem Soc ; 143(34): 13624-13632, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342992

RESUMEN

The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables access to direct charge transport, dial-in lateral/vertical electronic devices, and the unveiling of transport mechanisms but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M = Cu or Fe) with an unprecedented edge-on layer orientation at the air/water interface. The edge-on structure formation is guided by the preorganization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2 size) Hall-effect measurement reveals a Hall mobility of ∼4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the development of various optoelectronic applications and the exploration of unique transport properties.

15.
Small ; 17(51): e2104356, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34791798

RESUMEN

Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.

16.
BMC Med Inform Decis Mak ; 21(1): 283, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654419

RESUMEN

BACKGROUND: The liver is an important organ that undertakes the metabolic function of the human body. Liver cancer has become one of the cancers with the highest mortality. In clinic, it is an important work to extract the liver region accurately before the diagnosis and treatment of liver lesions. However, manual liver segmentation is a time-consuming and boring process. Not only that, but the segmentation results usually varies from person to person due to different work experience. In order to assist in clinical automatic liver segmentation, this paper proposes a U-shaped network with multi-scale attention mechanism for liver organ segmentation in CT images, which is called MSA-UNet. Our method makes a new design of U-Net encoder, decoder, skip connection, and context transition structure. These structures greatly enhance the feature extraction ability of encoder and the efficiency of decoder to recover spatial location information. We have designed many experiments on publicly available datasets to show the effectiveness of MSA-UNet. Compared with some other advanced segmentation methods, MSA-UNet finally achieved the best segmentation effect, reaching 98.00% dice similarity coefficient (DSC) and 96.08% intersection over union (IOU).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Humanos , Hígado/diagnóstico por imagen , Tomografía Computarizada por Rayos X
17.
J Am Chem Soc ; 142(52): 21622-21627, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33332109

RESUMEN

Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are emerging as a unique class of semiconducting 2D conjugated polymers for (opto)electronics and energy storage. Doping is one of the common, reliable strategies to control the charge carrier transport properties, but the precise mechanism underlying COF doping has remained largely unexplored. Here we demonstrate molecular iodine doping of a metal-phthalocyanine-based pyrazine-linked 2D c-COF. The resultant 2D c-COF ZnPc-pz-I2 maintains its structural integrity and displays enhanced conductivity by 3 orders of magnitude, which is the result of elevated carrier concentrations. Remarkably, Hall effect measurements reveal enhanced carrier mobility reaching ∼22 cm2 V-1 s-1 for ZnPc-pz-I2, which represents a record value for 2D c-COFs in both the direct-current and alternating-current limits. This unique transport phenomenon with largely increased mobility upon doping can be traced to increased scattering time for free charge carriers, indicating that scattering mechanisms limiting the mobility are mitigated by doping. Our work provides a guideline on how to assess doping effects in COFs and highlights the potential of 2D c-COFs to display high conductivities and mobilities toward novel (opto)electronic devices.

18.
Chemistry ; 26(33): 7497-7503, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298000

RESUMEN

Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels-Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0 =0.72; half-life, t1/2 =3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels-Alder reaction, which featured a biradical character at the ground state (y0 =0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels-Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties.

19.
J Am Chem Soc ; 141(42): 16810-16816, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31557002

RESUMEN

π-Conjugated two-dimensional covalent organic frameworks (2D COFs) are emerging as a novel class of electroactive materials for (opto)electronic and chemiresistive sensing applications. However, understanding the intricate interplay between chemistry, structure, and conductivity in π-conjugated 2D COFs remains elusive. Here, we report a detailed characterization for the electronic properties of two novel samples consisting of Zn- and Cu-phthalocyanine-based pyrazine-linked 2D COFs. These 2D COFs are synthesized by condensation of metal-phthalocyanine (M = Zn and Cu) and pyrene derivatives. The obtained polycrystalline-layered COFs are p-type semiconductors both with a band gap of ∼1.2 eV. A record device-relevant mobility up to ∼5 cm2/(V s) is resolved in the dc limit, which represents a lower threshold induced by charge carrier localization at crystalline grain boundaries. Hall effect measurements (dc limit) and terahertz (THz) spectroscopy (ac limit) in combination with density functional theory (DFT) calculations demonstrate that varying metal center from Cu to Zn in the phthalocyanine moiety has a negligible effect in the conductivity (∼5 × 10-7 S/cm), charge carrier density (∼1012 cm-3), charge carrier scattering rate (∼3 × 1013 s-1), and effective mass (∼2.3m0) of majority carriers (holes). Notably, charge carrier transport is found to be anisotropic, with hole mobilities being practically null in-plane and finite out-of-plane for these 2D COFs.

20.
Nanotechnology ; 30(5): 054001, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499464

RESUMEN

In the present work, millisecond-range flash lamp annealing is used to recrystallize Mn-implanted Ge. Through systematic investigations of structural and magnetic properties, we find that the flash lamp annealing produces a phase mixture consisting of spinodally decomposed Mn-rich ferromagnetic clusters within a paramagnetic-like matrix with randomly distributed Mn atoms. Increasing the annealing energy density from 46, via 50, to 56 J cm-2 causes the segregation of Mn atoms into clusters, as proven by transmission electron microscopy analysis and quantitatively confirmed by magnetization measurements. According to x-ray absorption spectroscopy, the dilute Mn ions within Ge are in d 5 electronic configuration. This Mn-doped Ge shows paramagnetism, as evidenced by the unsaturated magnetic-field-dependent x-ray magnetic circular dichroism signal. Our study reveals how spinodal decomposition occurs and influences the formation of ferromagnetic Mn-rich Ge-Mn nanoclusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA