Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 8108, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808280

RESUMEN

Three kinds of Al-TiO2 samples and pure TiO2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al2(SO4)3∙18H2O, AlCl3, and Al(NO3)3∙9H2O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO2 nanoparticles were studied. The energy gap (Eg) of Al-TiO2 nanoparticles decreases due to Al ion doping into TiO2. The photocatalytic activities of the Al-TiO2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO2 nanoparticles prepared from Al(NO3)3∙9H2O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO2 nanoparticles prepared with AlCl3, Al2(SO4)3∙18H2O and pure TiO2. The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO2 nanoparticles.

2.
J Hazard Mater ; 285: 368-74, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25528236

RESUMEN

A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica.


Asunto(s)
Amoníaco/análisis , Dióxido de Silicio/química , Óxido de Zinc/química , Amoníaco/química , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA