Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(5): e2316914121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252828

RESUMEN

High-performance sodium storage at low temperature is urgent with the increasingly stringent demand for energy storage systems. However, the aggravated capacity loss is induced by the sluggish interfacial kinetics, which originates from the interfacial Na+ desolvation. Herein, all-fluorinated anions with ultrahigh electron donicity, trifluoroacetate (TFA-), are introduced into the diglyme (G2)-based electrolyte for the anion-reinforced solvates in a wide temperature range. The unique solvation structure with TFA- anions and decreased G2 molecules occupying the inner sheath accelerates desolvation of Na+ to exhibit decreased desolvation energy from 4.16 to 3.49 kJ mol-1 and 24.74 to 16.55 kJ mol-1 beyond and below -20 °C, respectively, compared with that in 1.0 M NaPF6-G2. These enable the cell of Na||Na3V2(PO4)3 to deliver 60.2% of its room-temperature capacity and high capacity retention of 99.2% after 100 cycles at -40 °C. This work highlights regulation of solvation chemistry for highly stable sodium-ion batteries at low temperature.

2.
Angew Chem Int Ed Engl ; 63(21): e202402342, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38491787

RESUMEN

Zn deposition with a surface-preferred (002) crystal plane has attracted extensive attention due to its inhibited dendrite growth and side reactions. However, the nucleation and growth of the Zn(002) crystal plane are closely related to the interfacial properties. Herein, oriented growth of Zn(002) crystal plane is realized on Ag-modified surface that is directly visualized by in situ atomic force microscopy. A solid solution HCP-Zn (~1.10 at. % solubility of Ag, 30 °C) is formed on the Ag coated Zn foil (Zn@Ag) and possesses the same crystal structure as Zn to reduce its nucleation barrier caused by their lattice mismatch. It merits oriented Zn deposition and corrosion-resistant surface, and presents long cycling stability in symmetric cells and full cells coupled with V2O5 cathode. This work provides insights into interfacial regulation of Zn anodes for high-performance aqueous zinc metal batteries.

3.
Angew Chem Int Ed Engl ; : e202410494, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007424

RESUMEN

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

4.
Angew Chem Int Ed Engl ; 63(21): e202400406, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38491786

RESUMEN

Diluents have been extensively employed to overcome the disadvantages of high viscosity and sluggish kinetics of high-concentration electrolytes, but generally do not change the pristine solvation structure. Herein, a weakly coordinating diluent, hexafluoroisopropyl methyl ether (HFME), is applied to regulate the coordination of Na+ with diglyme and anion and form a diluent-participated solvate. This unique solvation structure promotes the accelerated decomposition of anions and diluents, with the construction of robust inorganic-rich electrode-electrolyte interphases. In addition, the introduction of HFME reduces the desolvation energy of Na+, improves ionic conductivity, strengthens the antioxidant, and enhances the safety of the electrolyte. As a result, the assembled Na||Na symmetric cell achieves a stable cycle of over 1800 h. The cell of Na||P'2-Na0.67MnO2 delivers a high capacity retention of 87.3 % with a high average Coulombic efficiency of 99.7 % after 350 cycles. This work provides valuable insights into solvation chemistry for advanced electrolyte engineering.

5.
Angew Chem Int Ed Engl ; 63(30): e202402946, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38696279

RESUMEN

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

6.
Chem Sci ; 15(23): 8651-8663, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873071

RESUMEN

Na3V2(PO4)3 (NVP) cathode materials with the advantages of long cycle life and superior thermal stability have been considered promising cathode candidates for SIBs. However, the unsatisfactory energy density derived from low theoretical capacity and operating voltage (3.35 V vs. Na+/Na, based on the V3+/V4+ redox couple) inevitably limits their practical application. Therefore, the activation of the V4+/V5+ redox couple (∼4.0 V vs. Na+/Na) in NVP-based cathode materials to boost the energy density of SIBs has attracted extensive attention. Herein, we first analyze the challenges of activation of the V4+/V5+ redox couple in NVP-based cathode materials. Subsequently, the recent achievement of NVP-based cathode materials with activated V4+/V5+ redox reactions for SIBs is overviewed. Finally, further research directions of high voltage V4+/V5+ redox reactions in NVP-based cathodes are proposed. This review provides valuable guidance for developing high energy density NVP-based cathode materials for SIBs.

7.
Chem Sci ; 15(19): 7144-7149, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756800

RESUMEN

Garnet-type solid-state Li metal batteries (SSLMBs) are viewed as hopeful next-generation batteries due to their high energy density and safety. However, the major obstacle to the development of garnet-type SSLMBs is the lithiophobicity of Li6.75La3Zr1.75Ta0.25O12 (LLZTO), resulting in a large interfacial impedance. Herein, a LiI/ZnLix mixed ion/electron conductive buffer layer is constructed at the interface by an in situ reaction of molten Li metal with ZnI2 film. This mixed buffer layer ensures close contact between the Li metal and garnet, significantly reducing interfacial impedance. As a result, the Li symmetrical cell with the LiI/ZnLix buffer layer shows an interface impedance of 10.3 Ω cm2, much lower than that of the cell with bare LLZTO (1173.4 Ω cm2). The critical current density (CCD) is up to 2.3 mA cm-2, and the symmetric cells present a long cycle life of 2000 h at 0.1 mA cm-2 and 800 h at 1.0 mA cm-2. In addition, the full cells assembled with the LiFePO4 cathode show a capacity of 143.9 mA h g-1 after 200 cycles at 0.5C with a low-capacity decay of 0.021% per cycle. This work reveals a simple, feasible, and practical interface modification strategy for solid-state Li metal batteries.

8.
Chem Sci ; 15(11): 4135-4139, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487247

RESUMEN

Na2Fe2(SO4)3 (NFS), as a promising cathode for sodium-ion batteries, is still plagued by its poor intrinsic conductivity. In general, hybridization with carbon materials is an effective strategy to improve the sodium storage performance of NFS. However, the role of carbon materials in the electrochemical performance of NFS cathode materials has not been thoroughly investigated. Herein, the effect of carbon materials was revealed by employing various conductive carbon materials as carbon sources. Among these, the NFS coated with Ketjen Black (NFS@KB) shows the largest specific surface area, which is beneficial for electrolyte penetration and rapid ionic/electronic migration, leading to improved electrochemical performance. Therefore, NFS@KB shows a long cycle life (74.6 mA h g-1 after 1000 cycles), superior rate performance (61.5 mA h g-1 at a 5.0 A g-1), and good temperature tolerance (-10 °C to 60 °C). Besides, the practicality of the NFS@KB cathode was further demonstrated by assembling a NFS@KB//hard carbon full cell. Therefore, this research indicates that a suitable carbon material for the NFS cathode can greatly activate the sodium storage performance.

9.
Chem Sci ; 15(13): 4833-4838, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550702

RESUMEN

Sodium metal batteries have attracted increasing interest recently, but suffer from severe dendrite growth caused by uneven Na plating/stripping behavior, which may result in the piercing of the membrane, with short circuiting and even cause explosions. Herein, a conductive and sodiophilic Ag coating layer is introduced to regulate Na deposition behaviors for highly reversible sodium metal batteries. Ag coated Zn foil with enhanced sodiophilicity, rapid Na+ transfer kinetics and superior electronic conductivity guarantee the homogenized Na+ ion and electric field distribution. This enables remarkably low overpotentials and uniform Na plating/stripping behavior with ultrahigh Coulombic efficiency of 99.9% during 500 cycles. As expected, the enhanced electrochemical performance of the anode-less battery and anode-free battery coupled with Prussian blue is achieved with the help of Ag coating. This work emphasizes the role of the conductive and sodiophilic coating layer in regulating the Na deposition behaviors for highly reversible sodium metal batteries.

10.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517038

RESUMEN

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

11.
Adv Mater ; 36(28): e2400169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38607696

RESUMEN

Intrinsically safe sodium-ion batteries are considered as a promising candidate for large-scale energy storage systems. However, the high flammability of conventional electrolytes may pose serious safety threats and even explosions. Herein, a strategy of constructing a deep eutectic electrolyte is proposed to boost the safety and electrochemical performance of succinonitrile (SN)-based electrolyte. The strong hydrogen bond between S═O of 1,3,2-dioxathiolane-2,2-dioxide (DTD) and the α-H of SN endows the enhanced safety and compatibility of SN with Lewis bases. Meanwhile, the DTD participates in the inner Na+ sheath and weakens the coordination number of SN. The unique solvation configuration promotes the formation of robust gradient inorganic-rich electrode-electrolyte interphase, and merits stable cycling of half-cells in a wide temperature range, with a capacity retention of 82.8% after 800 cycles (25 °C) and 86.3% after 100 cycles (60 °C). Correspondingly, the full cells deliver tremendous improvement in cycling stability and rate performance.

12.
Chem Sci ; 15(31): 12189-12199, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39118610

RESUMEN

Potassium-ion batteries (PIBs) are considered potential candidates for large-scale energy storage systems due to the abundant resources of potassium. Among various reported anode materials, bismuth anodes with the advantages of high theoretical specific capacity, low cost, and nontoxicity have attracted widespread attention. However, bismuth anodes experience significant volume changes during the charge/discharge process, leading to unsatisfactory cycling stability and rate performance. In this review, we focus on summarizing the research progress of bismuth anodes in PIBs. We discuss in detail the modification strategies for bismuth anodes in PIBs, including electrolyte optimization, morphology design, and hybridization with carbon materials. In addition, we attempt to propose possible future directions for the development of bismuth anodes in PIBs, aiming to expedite their practical application. It is believed that this review can assist researchers in more efficiently designing high-performance bismuth anode materials for PIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA