Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 404: 282-296, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30742966

RESUMEN

Fragile X mental retardation protein (FMRP), a key determinant of normal brain development and neuronal plasticity, plays critical roles in nucleocytoplasmic shuttling of mRNAs. However, the factors involved in FMRP nuclear localization remain to be determined. Using cross-species sequence comparison, we show that an aspartate in position 132 (D132), located within the conserved nuclear localization signal (NLS) of FMRP, appears in human and other mammals, while glutamate 132 (E132) appears in rodents and birds. Human FMRP-D132E alters the secondary structure of the protein and reduces its nuclear localization, while the reciprocal substitution in mouse FMRP-E132D promotes its nuclear localization. Human FMRP could interact with poly(A)-binding protein 1 (PABP1) which is impeded by the D132E mutation. Reversely, mouse FMRP could not interact with PABP1, but the E132D mutation leads to the FMRP-PABP1 interaction. We further show that overexpression of human FMRP-D132E mutant promotes the formation of cytoplasmic aggregates of PABP1 in human cells, but not of mouse FMRP-E132D in mouse cells. PABP1 knockdown reduces the nuclear localization of human FMRP, but not mouse FMRP. Furthermore, RNase A treatment decreases the PABP1 levels in the anti-V5-immunoprecipitates using the V5-hFMRP-transfected cells, suggesting an interaction between human FMRP and PABP1 in an RNA-dependent fashion. Thus, our data suggest that the FMRP protein with the human-used D132 accommodates a novel protein-RNA-protein interaction which may implicate a connection between FMRP residue transition and neural evolution.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Células HEK293 , Humanos , Ratones , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , ARN/química , ARN/genética , Especificidad de la Especie
2.
Neuroscience ; 349: 64-75, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28257890

RESUMEN

Fragile X mental retardation protein (FMRP), an important RNA-binding protein responsible for fragile X syndrome, is involved in posttranscriptional control of gene expression that links with brain development and synaptic functions. Here, we reveal a novel role of FMRP in pre-mRNA alternative splicing, a general event of posttranscriptional regulation. Using co-immunoprecipitation and immunofluorescence assays, we identified that FMRP interacts with an alternative-splicing-associated protein RNA-binding protein 14 (RBM14) in a RNA-dependent fashion, and the two proteins partially colocalize in the nuclei of hippocampal neurons. We show that the relative skipping/inclusion ratio of the micro-exon L in the Protrudin gene and exon 10 in the Tau gene decreased in the hippocampus of Fmr1 knockout (KO) mice. Knockdown of either FMRP or RBM14 alters the relative skipping/inclusion ratio of Protrudin and Tau in cultured Neuro-2a cells, similar to that in the Fmr1 KO mice. Furthermore, overexpression of FMRP leads to an opposite pattern of the splicing, which can be offset by RBM14 knockdown. RNA immunoprecipitation assays indicate that FMRP promotes RBM14's binding to the mRNA targets. In addition, overexpression of the long form of Protrudin or the short form of Tau promotes protrusion growth of the retinoic acid-treated, neuronal-differentiated Neuro-2a cells. Together, these data suggest a novel function of FMRP in the regulation of pre-mRNA alternative splicing through RBM14 that may be associated with normal brain function and FMRP-related neurological disorders.


Asunto(s)
Empalme Alternativo/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Precursores del ARN/genética , Animales , Células Cultivadas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Inmunoprecipitación/métodos , Ratones Noqueados , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Mol Neurobiol ; 54(4): 2585-2594, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26993298

RESUMEN

Fragile X mental retardation protein (FMRP), associated with fragile X syndrome, is known as an RNA-binding protein to regulate gene expression at post-transcriptional level in the brain. FMRP is also involved in microRNA (miRNA) biogenesis during the process of precursor miRNA (pre-miRNA) into mature miRNA. However, there is no description of the effect of FMRP on primary miRNA (pri-miRNA) processing. Here, we uncover a novel role of FMRP in pri-miRNA processing via controlling Drosha translation. We show that the expression of DROSHA protein, instead of its messenger RNA (mRNA) transcripts, is downregulated in both the hippocampus of Fmr1-knockout mice and the FMRP-knockdown Neuro-2a cells. Overexpression or knockdown FMRP does not alter Drosha mRNA stability. Immunoprecipitation and polysome analyses demonstrate that FMRP binds to the Drosha mRNA and enhances its translation. Additionally, we show that loss of FMRP in Fmr1-deficient mice results in the accumulation of three in six analyzed pri-miRNAs and the reduction of the corresponding pre-miRNAs and mature miRNAs. Thus, our data suggest that FMRP is involved in pri-miRNA processing via enhancing DROSHA expression that may play an important role in fragile X syndrome.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/genética , Biosíntesis de Proteínas/genética , Procesamiento Postranscripcional del ARN/genética , Ribonucleasa III/genética , Animales , Línea Celular Tumoral , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Ratones Noqueados , MicroARNs/metabolismo , Unión Proteica/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA