Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cardiology ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097963

RESUMEN

INTRODUCTION: To explore the cytological characteristics of tetralogy of Fallot (TOF), we collected samples and studied the differences in cytological classification between normal fetal hearts and fetuses with TOF, and then we searched for possible differential genes of disease markers through single-cell sequencing analysis. METHODS: In this study, we analyzed the right ventricle of a TOF and a healthy human fetal heart sample by single-cell sequencing. Utilizing Cellranger to perform data quality control filtering, comparison, quantification, and identification of recovered cells on the raw data, ultimately obtaining gene expression matrices for each cell. Subsequently, Seurat was used for further cell filtration, standardization, cell subgroup classification, differential expression gene analysis of each subgroup, and Marker gene screening. RESULTS: Bioinformatic analysis identified 9979 and 15224 cells derived from the healthy and disease samples, respectively, with an average read depth of 25000/cell. The cardiomyocyte cell populations derived from the abnormal samples identified by the first-level graph-based analysis were separated into six distinct cell clusters. CONCLUSIONS: Our study reveals some information on TOF in a fetus, which can provide a new reference for early detection and treatment of TOF by comparing it with normal heart cells.

2.
J Fluoresc ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878194

RESUMEN

Nitrite ion is one of the materials widely used in human life, and the accurate, sensitive and stable detection of nitrite ions is of great significance to people's healthy life. In this study, nitrogen-doped fluorescent carbon dots (N-CDs) for detecting nitrite salt solutions were prepared using citric acid monohydrate and Chrysoidin as precursors through a one-pot hydrothermal method. Under the condition of pH = 3, a noticeable quenching phenomenon occurred in the carbon dot solution with the increase in nitrite ion concentration. This quenching effect might be attributed to the diazonium effect. N-CDs have been successfully used as fluorescence probes for NO2- detection. NO2- can effectively quench the fluorescence intensity of N-CDs, providing a linear response to fluorescence quenching efficiency with respect to NO2- concentration within the range of 0-10µM and 10-30µM, and a detection limit of 52nM, showing high sensitivity. In addition, the probe was applied to the determination of NO2- in ham sausage samples with a detection limit of 0.67µM and recoveries in the range of 99.5-102.3%, the fluorescent probe showed satisfactory reliability.

3.
J Fluoresc ; 34(2): 905-913, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37418199

RESUMEN

With the expansion of human activities, the consequent influx of mercury (Hg) into the food chain and the environment is seriously threatening human life. Herein, nitrogen and sulfur co-doped fluorescent carbon quantum dots (yCQDs) were prepared via a hydrothermal method using o-phenylenediamine (OPD) and taurine as precursors. The morphological characteristics as well as spectral features of yCQDs indicated that the photoluminescence mechanism should be the molecular state fluorophores of 2, 3-diaminophenothiazine (oxOPD), which is the oxide of OPD. The as-synthesized yCQDs exhibited sensitive recognition of Hg2+. According to the investigation in combination of UV-Vis absorption spectra, time-resolved fluorescence spectra and quantum chemical calculations, the abundant functional groups on the surface of yCQDs allowed Hg2+ to bind with yCQDs through various interactions, and the formed complexes significantly inhibited the absorption of excitation light, resulting in the static fluorescence quenching of yCQDs. The proposed yCQDs was utilized for Hg2+ sensing with the limit of detection calculated to be 4.50 × 10- 8 M. Furthermore, the recognition ability of yCQDs for Hg2+ was estimated in tap water, lake water and bottled water, and the results indicated that yCQDs have potential applications in monitoring Hg2+.

4.
J Fluoresc ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457076

RESUMEN

Herein, a fluorescent "on-off-on" nanosensor based on N,S-CDs was developed for highly precise and sensitive recognition of Hg2+ and ampicillin (AMP). Nitrogen and sulfur co-doped carbon dots with blue fluorescence were synthesized by one-pot hydrothermal method using ammonium citrate and DL-methionine as precursors. N,S-CDs exhibited a surface abundant in -OH, -COOH, and -NH2 groups, aiding in creating non-fluorescent ground state complexes when combined with Hg2+, leading to the suppression of N,S-CDs' fluorescence. Subsequent to additional AMP application, the mixed system's fluorescence was restored. Based on this N,S-CDs sensing system, the thresholds for detection for AMP and Hg2+ were discovered to be 0.121 µM and 0.493 µM, respectively. Furthermore, this methodology proved effective in identifying AMP in real samples of tap and lake water, yielding satisfactory results. Consequently, in the area of bioanalysis in intricate environmental sample work, the sensing system showed tremendous promise.

5.
J Fluoresc ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305987

RESUMEN

In this paper, we obtained nitrogen and phosphorus co-doped carbon dots through a hydrothermal method using o-phenylenediamine and citric acid in a 40% phosphoric acid environment. The carbon dots emitted fluorescence at 476 nm under excitation at 408 nm and exhibited good selectivity and high sensitivity towards mercury ions. These carbon dots showed excellent dispersibility in water and maintained stable fluorescence even in high concentration salt environments. The interaction between mercury ions and functional groups on the carbon dots surface through electrostatic interaction resulted in static quenching. Simultaneously, by detecting the lifetime and transient absorption spectra of the carbon dots, we observed that the coordination of mercury ions with the carbon dots broadened the band structure of the carbon dots, and the existing photoinduced electron transfer process increased the non-radiative transition channel. The combined effect of dynamic quenching and static quenching significantly reduced the fluorescence intensity of the carbon dots at 476 nm. The carbon dots exhibited linear detection of mercury ions in the range of 0.01-1 µM, with a detection limit as low as 0.0245 µM. In terms of practical water environmental detection applications, these carbon dots were able to effectively detect mercury ions in tap water and lake water, demonstrating their broad application prospects in the field of environmental metal analysis.

6.
J Fluoresc ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538960

RESUMEN

Herein, we developed a sophisticated dual-mode sensor that utilized 3-aminophenylboric acid functionalized carbon dots (APBA-CDs) to accurately detect uric acid (UA). Our innovative process involved synthesizing APBA-CDs that emitted at 369 nm using a one-step hydrothermal method with 3-aminophenylboric acid and L-glutamine as precursors, ethanol and deionized water as solvents. Once UA was introduced to the APBA-CDs, the fluorescence of the system became visibly quenched. The results of Zeta potential, Fourier transformed infrared (FTIR) spectra, fluorescence lifetime, and other characteristics were analyzed to determine that the reaction mechanism was static quenching. This meant that after UA was mixed with APBA-CDs, it combined with the boric acid function on the surface to form complexes, resulting in a decrease in fluorescence intensity and a blue shift in the absorption peak at about 295 nm in the Ultraviolet-visible (UV-vis) absorption spectra. We were pleased to report that we have successfully used the dual-reading platform to accurately detect UA in serum and human urine. It provided a superior quantitative and visual analysis of UA without the involvement of enzymes. We firmly believe that our innovative dual-mode sensor has immense potential in the fields of biosensing and health monitoring.

7.
Mikrochim Acta ; 191(5): 233, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568427

RESUMEN

Nitrogen, boron co-doped carbon quantum dots (gCQDs), and a coloration probe (PPD-NPs) with response to cobalt ions (Co2+) were prepared by using 4-hydroxyphenylboric acid as the common precursor, with ethylenediamine and p-phenylenediamine (PPD) adopted as nitrogen-doped reagents, respectively. A noticeable brown-to-purple color change can be observed with the addition of Co2+, and a broad absorption band emerges at 535 nm. At the same time, gCQDs, which is introduced as the fluorescence signal source, will be significantly quenched due to the enhanced inner filtration effect, induced by the overlap between the emission spectrum of gCQDs and the emerging absorption band. Therefore, a colorimetric/fluorescent dual-mode sensing probe for Co2+ is constructed by combining the recognition unit PPD-NPs and the fluorescent gCQDs into PPD-NP/gCQD. Under the optimized experimental conditions, the calculated limits of detection are 1.51 × 10-7 M and 3.75 × 10-7 M for the colorimetric mode and the fluorescence mode, respectively, well qualified for the determination of Co2+ maximum permitted level in drinking water. The feasibility of the proposed method has been verified in tap water, lake water, and black tea samples.

8.
Mikrochim Acta ; 191(9): 529, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123066

RESUMEN

A ratiometric fluorescence probe based on carbon quantum dots with 420 nm emission (bCQDs) and a p-phenylenediamine-derived fluorescence probe with 550 nm emission (yprobe) is constructed for the detection of Mn2+. The presence of Mn2+ results in the enhanced absorption band at 400 nm of yprobe, and the fluorescence of yprobe is significantly enhanced based on the chelation-enhanced fluorescence mechanism. The fluorescence of bCQDs is then quenched based on the inner filtration effect. The ratio (I550/I420) linearly increases with the increase of Mn2+ concentration within 2.00 × 10-7-1.50 × 10-6 M, and the limit of detection is 1.76 × 10-9 M. Given the fluorescence color changing from blue to yellow, the visual sensing of Mn2+ is feasible based on bCQDs/yprobe coupled with RGB value analysis. The practicability of the proposed method has been verified in tap water, lake water, and sparkling water beverage, indicating that bCQDs/yprobe has promising application in Mn2+ monitoring.

9.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475133

RESUMEN

As the frequency of natural disasters increases, the study of emergency communication becomes increasingly important. The use of federated learning (FL) in this scenario can facilitate communication collaboration between devices while protecting privacy, greatly improving system performance. Considering the complex geographic environment, the flexible mobility and large communication radius of unmanned aerial vehicles (UAVs) make them ideal auxiliary devices for wireless communication. Using the UAV as a mobile base station can better provide stable communication signals. However, the number of ground-based IoT terminals is large and closely distributed, so if all of them transmit data to the UAV, the UAV will not be able to take on all of the computation and communication tasks because of its limited energy. In addition, there is competition for spectrum resources among many terrestrial devices, and all devices transmitting data will bring about an extreme shortage of resources, which will lead to the degradation of model performance. This will bring indelible damage to the rescue of the disaster area and greatly threaten the life safety of the vulnerable and injured. Therefore, we use user scheduling to select some terrestrial devices to participate in the FL process. In order to avoid the resource waste generated by the terrestrial device resource prediction, we use the multi-armed bandit (MAB) algorithm for equipment evaluation. Considering the fairness issue of selection, we try to replace the single criterion with multiple criteria, using model freshness and energy consumption weighting as reward functions. The state of the art of our approach is demonstrated by simulations on the datasets.

10.
J Environ Manage ; 367: 122106, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111006

RESUMEN

Organophosphate esters (OPEs) serve as significant flame retardants and plasticizers in various petrochemical downstream products. The petrochemical industry could be a potential source of atmospheric OPEs, but their emissions from this industry are poorly understood. The present study revealed the spatial variation, emission, and atmospheric transport of traditional and novel OPEs (TOPEs and NOPEs, respectively) in atmospheric particulate matter (PM) across Hainan and Guangdong petrochemical complexes (HNPC and GDPC, respectively) in southern China. The total concentrations of TOPEs ranged from 232 to 46,002 pg/m3 and from 200 to 20,347 pg/m3 in the HNPC and GDPC, respectively, which were substantially higher than those of NOPEs (HNPC: 23.5-147 pg/m3, GDPC: 13.9-465 pg/m3). Enterprises involved in the production of downstream petrochemical products presented relatively high concentrations of OPEs, indicating evident emissions of these pollutants in the petrochemical industry. The correlations of PM-bound OPEs in the atmosphere are determined mainly by their coaddition to industrial products or their coexistence in technical mixtures. The annual emissions of TOPEs and NOPEs in the HNPC were 42.6 kg and 0.34 kg, respectively, and those in the GDPC were 116 kg and 1.85 kg, respectively. OPEs from the HNPC can reach Vietnam, Cambodia, and Guangxi Province, China, and those from the GDPC can reach Guangxi Province and Hunan Province via atmospheric transmission after 24 h of emission. The OPE concentrations reaching the receptor regions were generally less than 3.20 pg/m3. Risk assessment revealed that OPE inhalation exposure on two petrochemical complexes likely poses minor risks for people living in the study areas, but the risk resulting from two chlorinated OPEs should be noted since they are close to the threshold values. This study has implications for enhancing control measures for OPE emissions to reduce health risks related to the petrochemical industry.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , China , Ésteres/análisis , Medición de Riesgo , Organofosfatos/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Retardadores de Llama/análisis
11.
Inflammopharmacology ; 32(4): 2153-2175, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761314

RESUMEN

Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Neuralgia , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Animales , Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico , Calidad de Vida
12.
J Integr Plant Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092784

RESUMEN

Calcium (Ca) is essential for plant growth and stress adaptation, yet its availability is often limited in acidic soils, posing a major threat to crop production. Understanding the intricate mechanisms orchestrating plant adaptation to Ca deficiency remains elusive. Here, we show that the Ca deficiency-enhanced nuclear accumulation of the transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) in Arabidopsis thaliana confers tolerance to Ca deprivation, with the global transcriptional responses triggered by Ca deprivation largely impaired in the stop1 mutant. Notably, STOP1 activates the Ca deprivation-induced expression of CATION/Ca2+ EXCHANGER 1 (CCX1) by directly binding to its promoter region, which facilitates Ca2+ efflux from endoplasmic reticulum to cytosol to maintain Ca homeostasis. Consequently, the constitutive expression of CCX1 in the stop1 mutant partially rescues the Ca deficiency phenotype by increasing Ca content in the shoots. These findings uncover the pivotal role of the STOP1-CCX1 axis in plant adaptation to low Ca, offering alternative manipulating strategies to improve plant Ca nutrition in acidic soils and extending our understanding of the multifaceted role of STOP1.

13.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3828-3836, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39099356

RESUMEN

This study aims to further elucidate the efficacy targets of celastrol(CEL) intervention in central inflammation in mice with obesity-depression comorbiditiy, based on the differential mRNA expression in the amygdala(AMY) and dorsal raphe nucleus(DRN) after CEL intervention. C57BL/6J mice were randomly divided into a normal diet group(Chow), a obesity-depression comorbidity(COM) group, and low-, medium-, and high-dose CEL groups(CEL-L, CEL-M, CEL-H, 0.5, 1.0, 2.0 mg·kg~(-1)). The Chow group received a normal diet, while the COM group and CEL-L, CEL-M, CEL-H groups received a high-fat diet combined with chronic stress from wet bedding. After 10 weeks of feeding, the mice were orally administered CEL for three weeks. Subsequently, the AMY and DRN of mice in the Chow, COM, and CEL-H groups were subjected to transcriptome analysis, and the intersection of target differentially expressed genes in both nuclei was visualized using a Venn diagram. The intersected genes were then imported into STRING for protein-protein interaction(PPI) analysis, and Gene Ontology(GO) analysis was performed using DAVID to identify the core targets regulated by CEL in the AMY and DRN. Independent samples were subjected to quantitative real-time PCR(qPCR) to validate the intersection genes. The results revealed that the common genes regulated by CEL in the AMY and DRN included chemokine family genes Ccl2, Ccl5, Ccl7, Cxcl10, Cxcr6, and Hsp70 family genes Hspa1a, Hspa1b, as well as Myd88, Il2ra, Irf7, Slc17a8, Drd2, Parp9, and Nampt. GO analysis showed that the top 5 nodes Ccl2, Cxcl10, Myd88, Ccl5, and Irf7 were all involved in immune-inflammation regulation(P<0.01). The qPCR results from independent samples showed that in the AMY, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Slc17a8, Parp9, and Nampt were significantly up-regulated in the COM group, with Drd2 showing a decreasing trend; these pathological changes were significantly improved in the CEL-H group compared to the COM group. In the DRN, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Parp9, and Nampt were significantly down-regulated, while Slc17a8 was significantly up-regulated in the COM group; compared with those in the COM group, Cxcr6, Irf7, and Drd2 were significantly up-regulated, while Slc17a8 was significantly down-regulated in the CEL-H group. In both the AMY and DRN, the expression of Irf7 by CEL showed both inhibition and activation in a dose-dependent manner(R~2 were 0.709 8 and 0.917 2, respectively). These findings suggest that CEL can effectively improve neuroinflammation by regulating bidirectional expression of the same target proteins, thereby intervening in the immune activation of the AMY and immune suppression of the DRN in COM mice.


Asunto(s)
Amígdala del Cerebelo , Depresión , Núcleo Dorsal del Rafe , Ratones Endogámicos C57BL , Obesidad , Triterpenos Pentacíclicos , Triterpenos , Animales , Ratones , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Triterpenos/farmacología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/genética , Humanos
14.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621941

RESUMEN

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Asunto(s)
Artemisininas , Neuralgia , Ratones , Animales , Pregabalina , Ácido gamma-Aminobutírico , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Neuralgia/metabolismo
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 619-624, 2024 Jun 15.
Artículo en Zh | MEDLINE | ID: mdl-38926379

RESUMEN

OBJECTIVES: To assess the effectiveness and safety of prone positioning in the treatment of neonatal respiratory distress syndrome (NRDS) using invasive respiratory support. METHODS: A prospective study was conducted from June 2020 to September 2023 at Suining County People's Hospital, involving 77 preterm infants with gestational ages less than 35 weeks requiring invasive respiratory support for NRDS. The infants were randomly divided into a supine group (37 infants) and a prone group (40 infants). Infants in the prone group were ventilated in the prone position for 6 hours followed by 2 hours in the supine position, continuing in this cycle until weaning from the ventilator. The effectiveness and safety of the two approaches were compared. RESULTS: At 6 hours after enrollment, the prone group showed lower arterial blood carbon dioxide levels, inspired oxygen concentration, oxygenation index, rates of tracheal intubation bacterial colonization, and Neonatal Pain, Agitation and Sedation Scale scores compared to the supine group (P<0.05). There were no significant differences between the groups in terms of pH, arterial oxygen pressure, positive end-expiratory pressure, duration of mechanical ventilation, accidental extubation, ventilator-associated pneumonia, air leak syndrome, skin pressure sores, feeding intolerance, and grades II-IV intraventricular hemorrhage (P>0.05). CONCLUSIONS: Compared to supine positioning, prone ventilation effectively improves oxygenation, increases comfort, and reduces tracheal intubation bacterial colonization in neonates requiring mechanical ventilation for NRDS, without significantly increasing adverse reactions.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria del Recién Nacido , Humanos , Posición Prona , Recién Nacido , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Masculino , Femenino , Estudios Prospectivos , Respiración Artificial/métodos
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 131-138, 2024 Feb 15.
Artículo en Zh | MEDLINE | ID: mdl-38436309

RESUMEN

OBJECTIVES: To investigate the clinical characteristics and prognosis of pneumococcal meningitis (PM), and drug sensitivity of Streptococcus pneumoniae (SP) isolates in Chinese children. METHODS: A retrospective analysis was conducted on clinical information, laboratory data, and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country. RESULTS: Among the 160 children with PM, there were 103 males and 57 females. The age ranged from 15 days to 15 years, with 109 cases (68.1%) aged 3 months to under 3 years. SP strains were isolated from 95 cases (59.4%) in cerebrospinal fluid cultures and from 57 cases (35.6%) in blood cultures. The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87) and 27% (21/78), respectively. Fifty-five cases (34.4%) had one or more risk factors for purulent meningitis, 113 cases (70.6%) had one or more extra-cranial infectious foci, and 18 cases (11.3%) had underlying diseases. The most common clinical symptoms were fever (147 cases, 91.9%), followed by lethargy (98 cases, 61.3%) and vomiting (61 cases, 38.1%). Sixty-nine cases (43.1%) experienced intracranial complications during hospitalization, with subdural effusion and/or empyema being the most common complication [43 cases (26.9%)], followed by hydrocephalus in 24 cases (15.0%), brain abscess in 23 cases (14.4%), and cerebral hemorrhage in 8 cases (5.0%). Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old, with rates of 91% (39/43) and 83% (20/24), respectively. SP strains exhibited complete sensitivity to vancomycin (100%, 75/75), linezolid (100%, 56/56), and meropenem (100%, 6/6). High sensitivity rates were also observed for levofloxacin (81%, 22/27), moxifloxacin (82%, 14/17), rifampicin (96%, 25/26), and chloramphenicol (91%, 21/23). However, low sensitivity rates were found for penicillin (16%, 11/68) and clindamycin (6%, 1/17), and SP strains were completely resistant to erythromycin (100%, 31/31). The rates of discharge with cure and improvement were 22.5% (36/160) and 66.2% (106/160), respectively, while 18 cases (11.3%) had adverse outcomes. CONCLUSIONS: Pediatric PM is more common in children aged 3 months to under 3 years. Intracranial complications are more frequently observed in children under 1 year old. Fever is the most common clinical manifestation of PM, and subdural effusion/emphysema and hydrocephalus are the most frequent complications. Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates. Adverse outcomes can be noted in more than 10% of PM cases. SP strains are high sensitivity to vancomycin, linezolid, meropenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Asunto(s)
Empiema , Hidrocefalia , Meningitis Neumocócica , Efusión Subdural , Lactante , Femenino , Masculino , Humanos , Niño , Recién Nacido , Adolescente , Meningitis Neumocócica/tratamiento farmacológico , Meningitis Neumocócica/epidemiología , Meropenem , Vancomicina , Levofloxacino , Linezolid , Moxifloxacino , Estudios Retrospectivos , Rifampin , Streptococcus pneumoniae , Cloranfenicol
17.
BMC Genomics ; 24(1): 291, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254055

RESUMEN

BACKGROUND: Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species. RESULTS: The first high-quality chromosome-level genome of the Hong Kong catfish was constructed. The total genome was 933.4 Mb, with 416 contigs and a contig N50 length of 8.52 Mb. Using high-throughput chromosome conformation capture (Hi-C) data, the genome assembly was divided into 28 chromosomes with a scaffold N50 length of 36.68 Mb. A total of 23,345 protein-coding genes were predicted in the genome, and 94.28% of the genes were functionally annotated in public databases. Phylogenetic analysis indicated that C. fuscus and Clarias magur diverged approximately 63.7 million years ago. The comparative genome results showed that a total of 60 unique, 353 expanded and 851 contracted gene families were identified in Hong Kong catfish. A sex-linked quantitative trait locus identified in a previous study was located in a sex-determining region of 30.26 Mb (0.02 to 30.28 Mb) on chromosome 13 (Chr13), the predicted Y chromosome. This QTL region contained 785 genes, of which 18 were identified as sex-related genes. CONCLUSIONS: This study is the first to report the chromosome-level genome assembly of Hong Kong catfish. The study provides an excellent genetic resource that will facilitate future studies of sex determination mechanisms and evolution in fish.


Asunto(s)
Bagres , Cromosomas , Animales , Filogenia , Hong Kong , Genoma , Bagres/genética , Cromosoma Y
18.
Clin Proteomics ; 20(1): 2, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609216

RESUMEN

BACKGROUND: Spermatozoa have the task of delivering an intact paternal genome to the oocyte and supporting successful embryo development. The detection of sperm DNA fragmentation (SDF) has been emerging as a complementary test to conventional semen analysis for male infertility evaluation, but the mechanism leading to SDF and its impact on assisted reproduction remain unclear. Therefore, the study identified and analyzed the differentially expressed proteins of sperm with high and low SDF. METHODS: Semen samples from men attended the infertility clinic during June 2020 and August 2020 were analyzed, and sperm DNA fragmentation index (DFI) was detected by the sperm chromatin structure assay. Semen samples with low DFI (< 30%, control group) and high DFI (≥ 30%, experimental group) were optimized by density gradient centrifugation (DGC), and the differentially expressed proteins of obtained sperm were identified by the Sequential Window Acquisition of All Theoretical Mass Spectra Mass Spectrometry (SWATH-MS) and performed GO and KEGG analysis. RESULTS: A total of 2186 proteins were identified and 1591 proteins were quantified, of which 252 proteins were identified as differentially expressed proteins, including 124 upregulated and 128 downregulated. These differentially expressed proteins were involved in metabolic pathways, replication/recombination/repair, acrosomal vesicles, kinase regulators, fertilization, tyrosine metabolism, etc. Western blotting results showed that the expression levels of RAD23B and DFFA proteins and the levels of posttranslational ubiquitination and acetylation modifications in the experimental group were significantly higher than those in the control group, which was consistent with the results of proteomics analysis. CONCLUSIONS: Proteomic markers of sperm with high DNA fragmentation can be identified by the SWATH-MS and bioinformatic analysis, and new protein markers and posttranslational modifications related to sperm DNA damage are expected to be intensively explored. Our findings may improve our understanding of the basic molecular mechanism of sperm DNA damage.

19.
Reprod Biomed Online ; 46(1): 11-19, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272896

RESUMEN

RESEARCH QUESTION: What are the molecular mechanisms leading to human sperm DNA damage? DESIGN: Semen samples were collected and the sperm DNA fragmentation index (DFI) was assessed. Differentially expressed RNA in spermatozoa with a high (DFI ≥30%, experimental group) or normal (DFI <30%, control group) DFI were identified by RNA-sequencing (RNA-seq) technology, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed. Three differentially expressed RNA related to sperm DNA damage and repair, namely PMS1, TP53BP1 and TLK2, were validated using real-time quantitative (RT-qPCR). RESULTS: A total of 19,970 expressed RNA were detected in the two groups. Compared with the control group, the expression levels of 189 RNA in the experimental group were significantly increased and those of 163 genes decreased. Gene Ontology enrichment analysis showed that these RNA were mainly concentrated in the ATPase-dependent transmembrane transport complex, extracellular exosome, somatic cell DNA recombination, protein binding, cytoplasm and regulation of localization. KEGG pathway analysis showed that these RNA were mainly related to the PI3K-Akt signalling pathway, endocytosis, p53 signalling pathway and cGMP-PKG signalling pathway. The RT-qPCR results showed that the expression levels of PMS1, TP53BP1 and TLK2 in the experimental group were significantly lower than in the control group (P = 0.01, 0.015 and 0.004, respectively), which was identical to the results of RNA sequencing. CONCLUSIONS: Differentially expressed RNA related to sperm DNA damage and repair may be identified by RNA-seq technology, which provides new insights into the understanding of sperm DNA damage and repair, and will help to discover new biomarkers related to sperm DNA damage.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Semen , Humanos , Masculino , RNA-Seq , Fosfatidilinositol 3-Quinasas/metabolismo , Espermatozoides/metabolismo , Daño del ADN , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , ARN/genética , Fragmentación del ADN
20.
J Fluoresc ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38148407

RESUMEN

The present study proposes a new approach for detecting trace amounts of creatinine (Cre) through the utilization of a fluorescence sensor system consisting of nitrogen doped carbon dots (NCDs) and gold ions (Au3+). Yellow fluorescent carbon dots were prepared using a one-step hydrothermal method with o-phenylenediamine and isopropanol as raw materials. First, gold ions are reduced to gold nanoparticles (Au NPs), which bind to NCDs, resulting in electron transfer and fluorescence quenching of NCDs. After adding creatinine, Cre and Au NPs were preferentially combined to form non-fluorescent complexes, and the NCDs fluorescence was restored. The study achieved a detection limit of 1.06 × 10-7 M for Au3+ and 9.29 × 10-9 M for creatinine, indicating a high level of sensitivity. The sensing system has also been successfully utilized for detecting Au3+ in lake water and Cre in human urine, indicating its promising potential and practical applications in the areas of environmental monitoring and biosensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA