Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Immunol ; 23(6): 916-926, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618833

RESUMEN

At steady state, the NOD-like receptor (NLR)-containing pyrin domain (PYD) (NLRP)1 inflammasome is maintained in an auto-inhibitory complex by dipeptidyl peptidases 8 and 9 (DPP8 and DPP9) and is activated by pathogen-encoded proteases after infection. Here, we showed that the open reading frame (ORF)45 protein of the Kaposi's sarcoma-associated herpesvirus activated the human NLRP1 (hNLRP1) inflammasome in a non-protease-dependent manner, and we additionally showed that the Linker1 region of hNLRP1, situated between the PYD and NACHT domains, was required for the auto-inhibition and non-protease-dependent activation of hNLRP1. At steady state, the interaction between Linker1 and the UPA subdomain silenced the activation of hNLRP1 in auto-inhibitory complexes either containing DPP9 or not in a manner independent of DPP9. ORF45 binding to Linker1 displaced UPA from the Linker1-UPA complex and induced the release of the C-terminal domain of hNLRP1 for inflammasome assembly. The ORF45-dependent activation of the NLRP1 inflammasome was conserved in primates but was not observed for murine NLRP1b inflammasomes.


Asunto(s)
Herpesvirus Humano 8 , Inflamasomas , Proteínas Virales/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Herpesvirus Humano 8/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Proteínas NLR/química , Proteínas NLR/metabolismo
2.
Nature ; 569(7758): 718-722, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118511

RESUMEN

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Asunto(s)
Secuencias de Aminoácidos , Secuencia Conservada , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Células HEK293 , Humanos , Interferón beta/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Nucleótidos Cíclicos/metabolismo , Unión Proteica , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 119(33): e2200285119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939686

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) inhibitor of cyclic GMP-AMP synthase (cGAS) (KicGAS) encoded by ORF52 is a conserved major tegument protein of KSHV and the first reported viral inhibitor of cGAS. In our previous study, we found that KicGAS is highly oligomerized in solution and that oligomerization is required for its cooperative DNA binding and for inhibiting DNA-induced phase separation and activation of cGAS. However, how KicGAS oligomerizes remained unclear. Here, we present the crystal structure of KicGAS at 2.5 Å resolution, which reveals an "L"-shaped molecule with each arm of the L essentially formed by a single α helix (α1 and α2). Antiparallel dimerization of α2 helices from two KicGAS molecules leads to a unique "Z"-shaped dimer. Surprisingly, α1 is also a dimerization domain. It forms a parallel dimeric leucine zipper with the α1 from a neighboring dimer, leading to the formation of an infinite chain of KicGAS dimers. Residues involved in leucine zipper dimer formation are among the most conserved residues across ORF52 homologs of gammaherpesviruses. The self-oligomerization increases the valence and cooperativity of interaction with DNA. The resultant multivalent interaction is critical for the formation of liquid condensates with DNA and consequent sequestration of DNA from being sensed by cGAS, explaining its role in restricting cGAS activation. The structure presented here not only provides a mechanistic understanding of the function of KicGAS but also informs a molecular target for rational design of antivirals against KSHV and related viruses.


Asunto(s)
Herpesvirus Humano 8 , Nucleotidiltransferasas , Proteínas Estructurales Virales , Herpesvirus Humano 8/metabolismo , Humanos , Nucleotidiltransferasas/metabolismo , Dominios Proteicos , Multimerización de Proteína , Proteínas Estructurales Virales/química
4.
J Biol Chem ; 299(3): 102986, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754281

RESUMEN

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human viruses that causes significant morbidity and mortality worldwide. To persist in the cell and consequently cause disease, DENV is evolved with mechanisms to suppress the induction of type I interferons by antagonizing cGAS-STING signaling. Using recombinant proteins and in vitro cleavage assays, we have shown that the DENV protease NS2B3 is capable of cleaving cGAS in the N-terminal region without disrupting the C-terminal catalytic center. This generates two major cleavage products: cleavage product N-terminal (CP-N) and cleavage product C-terminal (CP-C). We observed reduction in DNA-binding affinity of CP-C as compared to full-length cGAS. Reduction in DNA-binding affinity is also correlated with the decrease in enzymatic activity of CP-C. CP-N, on the other hand, has almost comparable DNA-binding ability as that of the full-length cGAS. In fact, CP-N competitively inhibits cyclic GMP-AMP production by both full-length cGAS and CP-C. We hypothesize that high DNA-binding affinity of CP-N enables it to sequester the DNA from CP-C and noncleaved full-length cGAS and thus reduces the rate of enzyme activation and cyclic GMP-AMP synthesis. Furthermore, we found that NS2B3 physically interacts with full-length cGAS and CP-C, laying the basis for their shuttling to and eventual degradation in the autophagosome. Overall, our study highlights a multifaceted and effective strategy by which an RNA virus antagonizes cGAS-STING signaling which may be useful for the design of antivirals targeting viral proteases.


Asunto(s)
Virus del Dengue , Nucleotidiltransferasas , Péptido Hidrolasas , Humanos , Virus del Dengue/enzimología , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Péptido Hidrolasas/metabolismo
5.
PLoS Pathog ; 18(4): e1010504, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35482828

RESUMEN

RSK1, an essential cellular kinase for Kaposi's sarcoma-associated herpesvirus (KSHV) replication, is highly phosphorylated and SUMOylated during KSHV lytic cycle, which determine the substrate phosphorylation and specificity of RSK1, respectively. However, the SUMO E3 ligase responsible for attaching SUMO to RSK1 has not yet been identified. By genome-wide screening, we found that KSHV ORF45 is necessary and sufficient to enhance RSK1 SUMOylation. Mechanistically, KSHV ORF45 binds to SUMOs via two classic SUMO-interacting motifs (SIMs) and functions as a SIM-dependent SUMO E3 ligase for RSK1. Mutations on these ORF45 SIMs resulted in much lower lytic gene expressions, viral DNA replication, and mature progeny virus production. Interestingly, KSHV ORF45 controls RSK1 SUMOylation and phosphorylation via two separated functional regions: SIMs and amino acid 17-90, respectively, which do not affect each other. Similar to KSHV ORF45, ORF45 of Rhesus Macaque Rhadinovirus has only one SIM and also increases RSK1 SUMOylation in a SIM-dependent manner, while other ORF45 homologues do not have this function. Our work characterized ORF45 as a novel virus encoded SUMO E3 ligase, which is required for ORF45-RSK1 axis-mediated KSHV lytic gene expression.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Animales , Línea Celular , Replicación del ADN , ADN Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Macaca mulatta/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral
6.
PLoS Pathog ; 17(12): e1010123, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871326

RESUMEN

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


Asunto(s)
Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sumoilación/fisiología , Replicación Viral/fisiología , Línea Celular , Humanos
7.
J Med Virol ; 95(3): e28659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36905218

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human diseases, including Kaposi sarcoma, primary effusion lymphoma, and a subset of multicentric Castleman's disease. KSHV uses its gene products to manipulate many aspects of the host responses during its life cycles. Among KSHV-encoded proteins, ORF45 is unique in both temporal and spatial expression: it is expressed as an immediate-early gene product and is an abundant tegument protein contained in the virion. ORF45 is specific to the gammaherpesvirinae subfamily but the homologs share only very limited homology and differ dramatically in protein length. In the past two decades, we and others have shown that ORF45 plays critical roles in immune evasion, viral replication, and virion assembly by targeting various host and viral factors. Herein, we summarize our current knowledge of ORF45 throughout the KSHV life cycle. We discuss the cellular processes targeted by ORF45 with emphasis on the modulation of host innate immune responses and rewiring the host signaling through impacting three major posttranslational modifications: phosphorylation, SUMOylation, and ubiquitination.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Línea Celular , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Replicación Viral/fisiología
8.
Nucleic Acids Res ; 49(16): 9389-9403, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34387695

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor that detects aberrant cytosolic DNA arising from pathogen invasions or genotoxic stresses. Upon binding to DNA, cGAS is activated and catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which induces potent antimicrobial and antitumor responses. Kaposi sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that causes Kaposi sarcoma and several other malignancies. We previously reported that KSHV inhibitor of cGAS (KicGAS) encoded by ORF52, inhibits cGAS enzymatic activity, but the underlying mechanisms remained unclear. To define the inhibitory mechanisms, here we performed in-depth biochemical and functional characterizations of KicGAS, and mapped its functional domains. We found KicGAS self-oligomerizes and binds to double stranded DNA cooperatively. This self-oligomerization is essential for its DNA binding and cGAS inhibition. Interestingly, KicGAS forms liquid droplets upon binding to DNA, which requires collective multivalent interactions with DNA mediated by both structured and disordered domains coordinated through the self-oligomerization of KicGAS. We also observed that KicGAS inhibits the DNA-induced phase separation and activation of cGAS. Our findings reveal a novel mechanism by which DNA viruses target the host protein phase separation for suppression of the host sensing of viral nucleic acids.


Asunto(s)
Herpesvirus Humano 8/genética , Interacciones Huésped-Patógeno/genética , Nucleotidiltransferasas/genética , Sarcoma de Kaposi/genética , Citosol/enzimología , Citosol/microbiología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/genética , ADN Viral/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Evasión Inmune/efectos de los fármacos , Inmunidad Innata/genética , Nucleótidos Cíclicos/genética , Nucleotidiltransferasas/antagonistas & inhibidores , Sarcoma de Kaposi/tratamiento farmacológico , Sarcoma de Kaposi/virología , Proteínas Virales/genética
9.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842327

RESUMEN

The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) requires sustained extracellular signal-regulated kinase (ERK)-p90 ribosomal S6 kinase (RSK) activation, which is induced by an immediate early (IE) gene-encoded tegument protein called ORF45, to promote the late transcription and translation of viral lytic genes. An ORF45-null or single-point F66A mutation in ORF45 abolishes ORF45-RSK interaction and sustained ERK-RSK activation during lytic reactivation and subsequently results in a significant decrease in late lytic gene expression and virion production, indicating that ORF45-mediated RSK activation plays a critical role in KSHV lytic replication. Here, we demonstrate that a short ORF45-derived peptide in the RSK-binding region is sufficient for disrupting ORF45-RSK interaction, consequently suppressing lytic gene expression and virion production. We designed a nontoxic cell-permeable peptide derived from ORF45, TAT-10F10, which is composed of the ORF45 56 to 76 amino acid (aa) region and the HIV Tat protein transduction domain, and this peptide markedly inhibits KSHV lytic replication in iSLK.219 and BCBL1 cells. Importantly, this peptide enhances the inhibitory effect of rapamycin on KSHV-infected cells and decreases spontaneous and hypoxia-induced lytic replication in KSHV-positive lymphoma cells. These findings suggest that a small peptide that disrupts ORF45-RSK interaction might be a promising agent for controlling KSHV lytic infection and pathogenesis.IMPORTANCE ORF45-induced RSK activation plays an essential role in KSHV lytic replication, and ORF45-null or ORF45 F66A mutagenesis that abolishes sustained RSK activation and RSK inhibitors significantly decreases lytic replication, indicating that the ORF45-RSK association is a unique target for KSHV-related diseases. However, the side effects, low affinity, and poor efficacy of RSK modulators limit their clinical application. In this study, we developed a nontoxic cell-permeable ORF45-derived peptide from the RSK-binding region to disrupt ORF45-RSK associations and block ORF45-induced RSK activation without interfering with S6K1 activation. This peptide effectively suppresses spontaneous, hypoxia-induced, or chemically induced KSHV lytic replication and enhances the inhibitory effect of rapamycin on lytic replication and sensitivity to rapamycin in lytic KSHV-infected cells. Our results reveal that the ORF45-RSK signaling axis and KSHV lytic replication can be effectively targeted by a short peptide and provide a specific approach for treating KSHV lytic and persistent infection.


Asunto(s)
Herpesvirus Humano 8/efectos de los fármacos , Proteínas Inmediatas-Precoces/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica/genética , Genes Virales/genética , Células HEK293 , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Unión Proteica , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Virión/metabolismo , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
10.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651359

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8 [HHV-8]), upon being reactivated, causes serious diseases in immunocompromised individuals. Its reactivation, especially how the cellular regulating mechanisms play roles in KSHV gene expression and viral DNA replication, is not fully understood. In searching for the cellular factors that regulate KSHV gene expression, we found that several histone deacetylases (HDACs) and sirtuins (SIRTs), including HDACs 2, 7, 8, and 11 and SIRTs 4 and 6, repress KSHV ori-Lyt promoter activity. Interestingly, the nuclear protein SIRT6 presents the greatest inhibitory effect on ori-Lyt promoter activity. A more detailed investigation revealed that SIRT6 exerts repressive effects on multiple promoters of KSHV. As a consequence of inhibiting the KSHV promoters, SIRT6 not only represses viral protein production but also inhibits viral DNA replication, as investigated in a KSHV-containing cell line, SLK-iBAC-gfpK52. Depletion of the SIRT6 protein using small interfering RNA could not directly reactivate KSHV from SLK-iBAC-gfpK52 cells but made the reactivation of KSHV by use of a small amount of the reactivator (doxycycline) more effective and enhanced viral DNA replication in the KSHV infection system. We performed DNA chromatin immunoprecipitation (ChIP) assays for SIRT6 in the SLK-iBAC-gfpK52 cell line to determine whether SIRT6 interacts with the KSHV genome in order to exhibit regulatory effects. Our results suggest that SIRT6 interacts with KSHV ori-Lyt and ORF50 promoters. Furthermore, the SIRT6-KSHV DNA interaction is significantly negated by reactivation. Therefore, we identified a cellular regulator, SIRT6, that represses KSHV replication by interacting with KSHV DNA and inhibiting viral gene expression.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a pathogen causing cancer in the immune-deficient population. The reactivation of KSHV from latency is important for it to be carcinogenic. Our finding that SIRT6 has inhibitory effects on KSHV reactivation by interacting with the viral genome and suppressing viral gene expression is important because it might lead to a strategy of interfering with KSHV reactivation. Overexpression of SIRT6 repressed the activities of several KSHV promoters, leading to reduced gene expression and DNA replication by KSHV in a KSHV bacterial artificial chromosome-containing cell line. Depletion of SIRT6 favored reactivation of KSHV from SLK-iBACV-gfpK52 cells. More importantly, we reveal that SIRT6 interacts with KSHV DNA. Whether the interaction of SIRT6 with KSHV DNA occurs at a global level will be further studied in the future.


Asunto(s)
Herpesvirus Humano 8/genética , Proteínas Inmediatas-Precoces/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología , Sirtuinas/metabolismo , Transactivadores/genética , Proteínas Virales/genética , Línea Celular , Línea Celular Tumoral , Replicación del ADN/genética , ADN Viral/genética , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Latencia del Virus/genética , Replicación Viral/genética
11.
Genome Res ; 24(2): 251-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24310001

RESUMEN

Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and "spring" to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.


Asunto(s)
Cromatina/genética , Herpesvirus Humano 8/genética , Nucleosomas/genética , Activación Viral/genética , Simulación por Computador , Genoma Humano , Humanos , Modelos Genéticos , Análisis de Secuencia de ADN
12.
J Virol ; 90(11): 5329-5342, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009954

RESUMEN

UNLABELLED: Although Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins following sucrose gradient centrifugation. We also determined that ORF52 resides inside the viral envelope and remains partially associated with capsid when extracellular virions are treated with various detergents and/or salts. There results indicate that ORF52 is a tegument protein abundantly present in extracellular virions. To characterize the roles of ORF52 in the KSHV life cycle, we engineered a recombinant KSHV ORF52-null mutant virus and found that loss of ORF52 results in reduced virion production and a further defect in infectivity. Upon analysis of the virion composition of ORF52-null viral particles, we observed a decrease in the incorporation of ORF45, as well as other tegument proteins, suggesting that ORF52 is important for the packaging of other virion proteins. In summary, our results indicate that, in addition to its immune evasion function, KSHV ORF52 is required for the optimal production of infectious virions, likely due to its roles in virion assembly as a tegument protein. IMPORTANCE: The tegument proteins of herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), play key roles in the viral life cycle. Each of the three subfamilies of herpesviruses (alpha, beta, and gamma) encode unique tegument proteins with specialized functions. We recently found that one such gammaherpesvirus-specific protein, ORF52, has an important role in immune evasion during KSHV primary infection, through inhibition of the host cytosolic DNA sensing pathway. In this report, we further characterize ORF52 as a tegument protein with vital roles during KSHV lytic replication. We found that ORF52 is important for the production of infectious viral particles, likely through its role in virus assembly, a critical process for KSHV replication and pathogenesis. More comprehensive investigation of the functions of tegument proteins and their roles in viral replication may reveal novel targets for therapeutic interventions against KSHV-associated diseases.


Asunto(s)
Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Proteínas del Envoltorio Viral/metabolismo , Virión/química , Replicación Viral , Animales , Citoplasma/ultraestructura , Citoplasma/virología , ADN Viral , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/inmunología , Humanos , Evasión Inmune , Ratones , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/aislamiento & purificación , Virión/genética , Virión/metabolismo , Ensamble de Virus
13.
J Virol ; 90(4): 1741-56, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637455

RESUMEN

UNLABELLED: We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918-4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE: Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Humano 8/fisiología , Replicación Viral , Proteínas de la Cápside/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Unión Proteica
14.
J Virol ; 90(13): 5953-5964, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27099309

RESUMEN

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis.


Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas/metabolismo , Replicación Viral , Línea Celular , Cromosomas Artificiales Bacterianos , Estabilidad de Enzimas , Edición Génica , Regulación Viral de la Expresión Génica , Células HEK293 , Herpesvirus Humano 8/enzimología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Proteínas Inmediatas-Precoces/genética , Mutagénesis , Mutación , Fosforilación , Proteínas Quinasas/genética , Electricidad Estática , Virión/química , Virión/genética
15.
PLoS Pathog ; 11(7): e1004993, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26133373

RESUMEN

Kaposi's Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates components of the host cell machinery via modulation of RSK activity. Thus, this study has important implications for the pathobiology of KSHV and other diseases in which RSK activity is dysregulated.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Parásitos/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Replicación Viral/fisiología , Western Blotting , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Humanos , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Proteómica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
16.
PLoS Pathog ; 11(12): e1005332, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26650119

RESUMEN

Herpesviruses acquire their envelope by budding into the lumen of cytoplasmic membrane vesicles. This process is initiated by component(s) on viral particles, which recognize the budding site where the viral glycoproteins are present and recruit cellular cargo transport and sorting machinery to the site to complete the budding process. Proteins in the tegument layer, connecting capsid and envelope, are candidates for the recognition of budding sites on vesicle membrane and induction of budding and final envelopment. We examined several outer and matrix tegument proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) and found that ORF45 associates with lipid rafts (LRs) of cellular membrane. LRs are membrane micro-domains, which have been implicated as relay stations in intracellular signaling and transport including viral entry and virion assembly. The ability of ORF45 to target LR is dependent on the mono-ubiquitylation of ORF45 at Lys297 as the mutation at Lys297 (K297R) abolished LR-association of ORF45. The K297R mutation also impairs ORF45 and viral particle co-localization with trans-Golgi network and endosomes, but facilitates ORF45 and viral particles co-localizing with lysosomes. More importantly, the recombinant KSHV carrying ORF45 K297R mutant (BAC-K297R) was found severely defective in producing mature and infectious virion particles in comparison to wild type KSHV (BAC16). Taken together, our results reveal a new function of KSHV tegument protein ORF45 in targeting LR of host cell membrane, promoting viral particles co-localization with trans-Golgi and endosome vesicles and facilitating the maturation and release of virion particles, suggesting that ORF45 plays a role in bringing KSHV particles to the budding site on cytoplasmic vesicle membrane and triggering the viral budding process for final envelopment and virion maturation.

17.
J Virol ; 89(13): 6895-906, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903346

RESUMEN

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple viral proteins that activate extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) cascades. One of these viral proteins, ORF45, mediates sustained ERK-p90 ribosomal S6 kinase (RSK) activation during KSHV lytic replication and facilitates viral translation through the phosphorylation of a eukaryotic translation initiation factor, eIF4B. The importance of ERK-RSK activation for KSHV viral transcription has been shown; however, which transcription factor senses the sustained MAPK signaling and leads to viral transcription remains poorly understood. Here we show that the presence of ORF45 leads to the prolonged accumulation of c-Fos during the late stage of KSHV lytic replication through ERK-RSK-dependent phosphorylation and stabilization and that the depletion of c-Fos disrupts viral lytic transcription. Genome-wide screening revealed that c-Fos directly binds to multiple viral gene promoters and enhances viral transcription. Mutation of the ERK-RSK phosphorylation sites of c-Fos restrains KSHV lytic gene expression and virion production. These results indicate that the prolonged accumulation of c-Fos promotes the progression of viral transcription from early to late stages and accelerates viral lytic replication upon sustained ORF45-ERK-RSK activation during the KSHV lytic life cycle. IMPORTANCE: During KSHV lytic replication, transient activation and sustained activation of ERK-RSK induce viral immediate early (IE) transcription and late transcription, respectively. Studies have revealed that ERK-RSK activates several transcription factors involved in IE gene expression, including Ets, AP-1, CREB, and C/EBP, which lead to the transient ERK-RSK activation-dependent IE transcription. Whereas c-Fos acts as a sensor of sustained ERK-RSK activation, ORF45-ERK-RSK signaling mediates c-Fos phosphorylation and accumulation during late KSHV lytic replication, consequently promoting viral transcription through the direct binding of c-Fos to multiple KSHV promoters. This finding indicates that c-Fos mediates distinct viral transcriptional progression following sustained ERK-RSK signaling during the KSHV lytic life cycle.


Asunto(s)
Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcripción Genética , Replicación Viral , Línea Celular , ADN Viral/metabolismo , Humanos , Proteínas Inmediatas-Precoces , Regiones Promotoras Genéticas , Unión Proteica
18.
J Virol ; 89(9): 4918-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25694600

RESUMEN

UNLABELLED: The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Mapeo de Interacción de Proteínas , Ubiquitina Tiolesterasa/metabolismo , Replicación Viral , Proteínas de la Cápside/química , Línea Celular , Humanos , Espectrometría de Masas , Peso Molecular , Ubiquitina Tiolesterasa/química , Peptidasa Específica de Ubiquitina 7
19.
J Virol ; 89(1): 195-207, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320298

RESUMEN

UNLABELLED: We have previously shown that ORF45, an immediate-early and tegument protein of Kaposi's sarcoma-associated herpesvirus (KSHV), causes sustained activation of p90 ribosomal S6 kinases (RSKs) and extracellular regulated kinase (ERK) (E. Kuang, Q. Tang, G. G. Maul, and F. Zhu, J Virol 82:1838-1850, 2008, http://dx.doi.org/10.1128/JVI.02119-07). We now have identified the critical region of ORF45 that is involved in RSK interaction and activation. Alanine scanning mutagenesis of this region revealed that a single F66A point mutation abolished binding of ORF45 to RSK or ERK and, consequently, its ability to activate the kinases. We introduced the F66A mutation into BAC16 (a bacterial artificial chromosome clone containing the entire infectious KSHV genome), producing BAC16-45F66A. In parallel, we also repaired the mutation and obtained a revertant, BAC16-45A66F. The reconstitution of these mutants in iSLK cells demonstrated that the ORF45-F66A mutant failed to cause sustained ERK and RSK activation during lytic reactivation, resulting in dramatic differences in the phosphoproteomic profile between the wild-type virus-infected cells and the mutant virus-infected cells. ORF45 mutation or deletion also was accompanied by a noticeable decreased in viral gene expression during lytic reactivation. Consequently, the ORF45-F66A mutant produced significantly fewer infectious progeny virions than the wild type or the revertant. These results suggest a critical role for ORF45-mediated RSK activation in KSHV lytic replication. IMPORTANCE: KSHV is the causative agent of three human malignancies. KSHV pathogenesis is intimately linked to its ability to modulate the host cell microenvironment and to facilitate efficient production of progeny viral particles. We previously described the mechanism by which the KSHV lytic protein ORF45 activates the cellular kinases ERK and RSK. We now have mapped the critical region of ORF45 responsible for binding and activation of ERK/RSK to a single residue, F66. We mutated this amino acid of ORF45 (F66A) and introduced the mutation into a newly developed bacterial artificial chromosome containing the KSHV genome (BAC16). This system has provided us with a useful tool to characterize the functions of ORF45-activated RSK upon KSHV lytic reactivation. We show that viral gene expression and virion production are significantly reduced by F66A mutation, indicating a critical role for ORF45-activated RSK during KSHV lytic replication.


Asunto(s)
Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Replicación Viral , Línea Celular , Análisis Mutacional de ADN , Activación Enzimática , Humanos , Proteínas Inmediatas-Precoces/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas
20.
PLoS One ; 19(7): e0304736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968248

RESUMEN

High throughput screening of small molecules and natural products is costly, requiring significant amounts of time, reagents, and operating space. Although microarrays have proven effective in the miniaturization of screening for certain biochemical assays, such as nucleic acid hybridization or antibody binding, they are not widely used for drug discovery in cell culture due to the need for cells to internalize lipophilic drug candidates. Lipid droplet microarrays are a promising solution to this problem as they are capable of delivering lipophilic drugs to cells at dosages comparable to solution delivery. However, the scalablility of the array fabrication, assay validation, and screening steps has limited the utility of this approach. Here we take several new steps to scale up the process for lipid droplet array fabrication, assay validation in cell culture, and drug screening. A nanointaglio printing process has been adapted for use with a printing press. The arrays are stabilized for immersion into aqueous solution using a vapor coating process. In addition to delivery of lipophilic compounds, we found that we are also able to encapsulate and deliver a water-soluble compound in this way. The arrays can be functionalized by extracellular matrix proteins such as collagen prior to cell culture as the mechanism for uptake is based on direct contact with the lipid delivery vehicles rather than diffusion of the drug out of the microarray spots. We demonstrate this method for delivery to 3 different cell types and the screening of 92 natural product extracts on a microarray covering an area of less than 0.1 cm2. The arrays are suitable for miniaturized screening, for instance in high biosafety level facilities where space is limited and for applications where cell numbers are limited, such as in functional precision medicine.


Asunto(s)
Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Análisis por Micromatrices/métodos , Animales , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA