Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Biochem ; 623: 114183, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798474

RESUMEN

With the increase in throughput and sensitivity, biophysical technology has become a major component of the early drug discovery phase. Surface plasmon resonance technology (SPR) is one of the most widely used biophysical technologies. It has the advantages of circumventing labeling, molecular weight limitations, and neglect of low affinity interactions, etc., and provides a robust platform for hit to lead discovery and optimization. Here, we successfully established a reliable and repeatable tryptophanyl tRNA synthetase (TrpRS) SPR high-throughput screening and validation system by optimizing the TrpRS tag, TrpRS immobilization methodology, and the buffer conditions. When TrpRS was immobilized on Streptavidin (SA) sensor chip, the substrate competitive inhibitor indolmycin exhibited the best binding affinity in HBS-P (10 mM HEPES, 150 mM NaCl, 0.05% surfactant P-20, pH 7.4), 1 mM ATP and MgCl2, with a KD (dissociation equilibrium constant) value of 0.6 ± 0.1 µM. The Z-factor values determined in the screening assays were all larger than 0.9. We hope that our proposed research ideas and methods may provide a scientific basis for establishing SPR analysis of other drug targets, accelerate the discovery and optimization of target lead compounds, and assist the clinical application of next-generation drugs.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Resonancia por Plasmón de Superficie/métodos , Triptófano-ARNt Ligasa/antagonistas & inhibidores , Triptófano-ARNt Ligasa/química , Indoles/química , Indoles/metabolismo , Estreptavidina/química , Triptófano/química , Triptófano/metabolismo , Triptófano-ARNt Ligasa/metabolismo
2.
Eur J Med Chem ; 250: 115167, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764123

RESUMEN

An indolin-2-(4-thiazolidinone) scaffold was previously shown to be a novel chemotype for JNK3 inhibition. However, more in vivo applications were limited due to the unconfirmed configuration and poor physicochemical properties. Here, the indolin-2-(4-thiazolidinone) scaffold validated the absolute configuration; substituents on the scaffold were optimized. Extensive structure activity relationship (SAR) studies were performed using kinase activity assays, thus leading to potent and highly selective JNK3 inhibitors with neuroprotective activity and good oral bioavailability. One lead compound, A53, was a potent and selective JNK3 inhibitor (IC50 = 78 nM) that had significant inhibition (>80% at 1 µM) to only JNK3 in a 398-kinase panel. A53 had low inhibition against JNK3 and high stability (t1/2(α) = 0.98 h, t1/2(ß) = 2.74 h) during oral administration. A modeling study of A53 in human JNK3 showed that the indolin-2-(4-thiazolidinone)-based JNK3 inhibitor with a 5-position-substituted hydrophilic group offered improved kinase inhibition.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 10 Activada por Mitógenos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Isoformas de Proteínas
3.
Acta Pharm Sin B ; 13(11): 4553-4577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969740

RESUMEN

Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-ß-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.

4.
Eur J Med Chem ; 233: 114196, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35231830

RESUMEN

Ataxia-telangiectasia mutated (ATM) kinase is a serine/threonine protein kinase and plays a key role in DNA double-strand breaks repair. Thus, ATM is considered a promising target for radiotherapy and chemotherapy sensitizing. Herein, we report the discovery of ATM agonist A22 and inhibitor A41 by computational methods and further biological evaluation. Among them, A22 exhibited low cytotoxicity in vitro and might serve as a useful tool for ATM research. Moreover, we firstly proved that ATM inhibitors could sensitize Irinotecan and Etoposide in a time-dependent manner on MCF-7 and SW480 cells, antagonism in a short period treatment while synergy at a long-term treatment and ATM agonist worked in an opposite way of ATM inhibitors. Further mechanism study demonstrated that the antagonism effect of ATM inhibitors with chemotherapeutic agents in a short period was resulting from inhibiting the p53/p21 axis to accelerate G1/S phase cell-cycle transition and promote cell survival. Additionally, A41 displayed antitumor effects combined with a chemotherapeutic drug in the SW480 xenograft model, indicating that A41 is a promising ATM inhibitor, which could increase the antitumor effect of chemotherapeutic drugs in vivo. All in all, these findings will guide the combination of ATM inhibitors with chemotherapeutic agents in further preclinical and clinical studies.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas
5.
Acta Pharm Sin B ; 11(7): 1947-1964, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386330

RESUMEN

Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 µmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.

6.
Eur J Med Chem ; 201: 112445, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603981

RESUMEN

The c-Jun N-terminal kinase 3 (JNK3) plays key roles in a wide range of diseases, including neurodegeneration diseases, inflammation diseases, cancers, cardiovascular diseases, and metabolic disorders. Previously, we have identified a lead compound, (Z)-3-(2-(naphthalen-1-yl)-2-oxoethylidene)-3,4-dihydroquinoxalin-2(1H)-one (J46), which contains a 3,4-dihydroquinoxalin-2(1H)-one core structure as a key fragment to inhibit JNK3. However, compound J46 displayed high DDR1 and EGFR (T790M, L858R) inhibition and poor physicochemical properties, especially clogD and water-solubility, in its biological studies. Herein, we optimized compound J46 by structure-based drug design and exploiting the selectivity and physicochemical properties of various warhead groups to obtain compound J46-37, which not only exhibited a potent inhibition against JNK3 but also showed more than 50-fold potency better than DDR1 and EGFR (T790M, L858R). Furthermore, the selectivity and structure-activity relationship of novel synthesized 3,4-dihydroquinoxalin-2(1H)-one derivatives were analyzed by molecular docking and molecular dynamics simulation. Overall, compound J46-37, as a highly selective inhibitor of JNK3 with well physicochemical properties, is worth developing as therapies for the treatment of diseases related to JNK3.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Quinoxalinas/química , Pruebas de Enzimas , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Quinoxalinas/síntesis química , Quinoxalinas/metabolismo , Relación Estructura-Actividad
7.
Eur J Med Chem ; 182: 111656, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31494467

RESUMEN

Chemical probes of epigenetic 'readers' of histone post-translational modifications (PTMs) have become powerful tools for mechanistic and functional studies of their target proteins in physiology and pathology. However, only limited 'reader' probes have been developed, which restricted our understanding towards these macromolecules and their roles in cells or animals. Here, we reported a structure-guided approach to develop and characterize benzo [d]oxazol-2(3H)-one analogs as the first potent and selective small-molecule inhibitors of chromodomain Y-like (CDYL), a histone methyllysine reader protein. The binding conformation between the chromodomain of CDYL and the modified peptidomimetics was studied via molecular docking and dynamic simulations, facilitating subsequent virtual screening of tens of hits from Specs chemical library validated by SPR technique (KD values: from 271.1 µM to 5.4 µM). Further design and synthesis of 43 compounds helped to interpret the structure-activity relationship (SAR) that lead to the discovery of novel small-molecule inhibitors of CDYL. Compound D03 (KD: 0.5 µM) was discovered and showed excellent selectivity among other chromodomain proteins, including CDYL2 (>140 folds), CDY1 (no observed binding) and CBX7 (>32 folds). Moreover, we demonstrated that D03 engaged with endogenous CDYL in a dose-dependent manner, and perturbed the recruitment of CDYL onto chromatin, resulting in transcriptional derepression of its target genes. Finally, the results showed that D03 promoted the development and branching of neurodendrites by inhibiting CDYL in hippocampal and cortical cultured neurons. This study not only discovers the first selective small-molecule inhibitors of CDYL, but provids a new chemical tool to intervene the dynamic nature of bio-macromolecules involved in epigenetic mechanism.


Asunto(s)
Benzoxazoles/farmacología , Proteínas Co-Represoras/antagonistas & inhibidores , Hidroliasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Benzoxazoles/síntesis química , Benzoxazoles/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Neuronas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA