Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174900, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047842

RESUMEN

Phthalate monoesters (mPAEs) possess biological activity that matches or even exceeds that of their parent compounds, phthalate esters (PAEs), negatively impacting humans. Indoor dust is the main carrier of indoor pollutants. In this study, indoor dust samples were collected from 46 households in Changchun City, Jilin Province, in May 2019, and particulate and flocculent fibrous dust was used as the research target to analyze the concentration and compositional characteristics of mPAEs, primary metabolites of five significant PAEs. The influence of factors such as architectural features and living habits in residential areas on exposure to mPAEs was explored. Ten suspected enzyme genes along with two metabolic pathways with the ability to degrade PAEs were screened using PICRUSt2. The results showed that the total concentrations of the five mPAEs in the indoor dust samples were particulate dust (11.49-78.69 µg/g) and flocculent fibrous dust (21.61-72.63 µg/g), respectively. The molar concentration ratio (RC) of mPAEs to corresponding PAEs significantly differed among chemicals, with MMP/DMP and MEP/DEP sporting the highest RC values. Different bacterial types have shown distinct influences against mPAEs and PAEs. Enzyme function and metabolic pathway abundance had a significant effect on the concentration of some mPAEs, mPAEs are most likely derived from microbial degradation of PAEs.

2.
Sci Total Environ ; 913: 169701, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159748

RESUMEN

The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Adolescente , Humanos , Universidades , Ácidos Ftálicos/análisis , Dibutil Ftalato , Polvo/análisis , China , Ésteres/análisis , Estudiantes
3.
Sci Total Environ ; 906: 167619, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806594

RESUMEN

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both enriched in soil-vegetable systems as a consequence of the prolonged use of agricultural mulches. MPs can form unique bacterial communities and provide potential hosts for ARGs. Therefore, MPs stress may promote the spread of ARGs from soil to crops. Increasing ARGs pollution in soil-vegetable system. In our research, we investigated the distribution and major driving elements of antibiotic resistance genes in the soil-vegetable system under microplastic stress. The results showed that MPs treatment decreased the relative abundance of ARGs in non-rhizosphere soil. High concentrations of MPs promoted the enrichment of tetracycline antibiotic resistance genes in rhizosphere soil. MPs treatment promoted the enrichment of ARGs and mobile genetic elements (MGEs) in lettuce tissues, and the overall abundance of ARGs in root after 0.5 %, 1 %, and 2 % (w/w, dry weight) polyethylene (PE) administration was considerably higher compared to that in the untreated group (p < 0.05). At the same time, high PE concentrations promoted the spread of sulfa ARGs from root to leaf. MPs also impacted the bacterial communities in the soil-plant system, and the changes in ARGs as well as MGEs in each part of the soil-vegetable system were significantly correlated with the bacterial diversity index (p < 0.05). Correlation analysis and network analysis showed that bacterial communities and MGEs were the main drivers of ARGs variation in soil-lettuce systems.


Asunto(s)
Microplásticos , Verduras , Genes Bacterianos , Suelo , Plásticos , Antibacterianos/farmacología , Microbiología del Suelo , Bacterias/genética , Farmacorresistencia Microbiana/genética , Lactuca , Polietilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA