RESUMEN
Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Paraplejía Espástica Hereditaria , Animales , Axones/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Mutación , Paraplejía Espástica Hereditaria/genética , Espastina/genéticaRESUMEN
The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER-shaping defects as a neuropathogenic mechanism.
Asunto(s)
Dinamina I/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Dinaminas/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.
Asunto(s)
Nanopartículas , Nanoestructuras , Puntos Cuánticos , Nanoestructuras/química , Metales , Dispositivos Laboratorio en un Chip , ÓxidosRESUMEN
Glioma alone accounts for 30% of various kinds of primary brain tumors and is the highest cause of mortality associated with intracranial malignant cancers. In the present study, Suzuki-coupling products of remimazolan were synthesized and investigated for anti-neoplastic property against glioma cells. RFMSP treatment for 48 hr suppressed viabilities of U-118MG and U87MG cells in dose dependent manner. Exposure of primary astrocytes to RFMSP at 2-20 µM concentration range minimally affected viabilities. RFMSP treatment at 5 µM doses raised apoptotic cell count to 53.8 ± 2.3% and 48.2 ± 1.8%, respectively in U-118MG and U87MG cells. Treatment of the cells with RFMSP induced nuclear condensation and subsequent fragmentation. In RFMSP treated U-118MG and U87MG cells, NF-κB p65 expression was markedly suppressed compared to the control cells. Additionally, RFMSP treatment decreased the ratio of nuclear to total NF-κB p65 level in both the cell lines. Treatment of U-118MG and U87MG cells with 5 µM RFMSP for 48 hr caused a marked down-regulation in survivin and XIAP levels. Treatment with RFMSP promoted Bax expression and suppressed Bcl-2 level. The caspase-9 and -3 activation was markedly induced by RFMSP treatment in U-118MG and U87MG cells compared to the control cells. In summary, the RFMSP synthesized by Suzuki-coupling of RFMSP inhibited glioma cell survival via DNA damage mediated apoptosis. The anti-glioma potential of RFMSP involved down-regulation of NF-κB expression, targeted survivin & XIAP levels and induced caspase activation in glioma cells. Therefore, RFMSP may be studied further as therapeutic agent for the treatment of glioma.
Asunto(s)
Apoptosis , Benzodiazepinas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Ciclo Celular , Movimiento Celular , Regulación hacia Abajo , Glioma/metabolismo , Glioma/patología , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Células Tumorales CultivadasRESUMEN
The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Replicación Viral/fisiología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Antivirales/farmacología , Efecto Citopatogénico Viral , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Proteínas de la Membrana , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Liberación del Virus , Virus Zika/efectos de los fármacosRESUMEN
Infectious bronchitis virus (IBV) is a member of genus gamma-coronavirus in the family Coronaviridae, causing serious economic losses to the poultry industry. Reverse genetics is a common technique to study the biological characteristics of viruses. So far, there is no BAC reverse genetic system available for rescue of IBV infectious clone. In the present study, a new strategy for the construction of IBV infectious cDNA clone was established. The full-length genomic cDNA of IBV vaccine strain H120 was constructed in pBAC vector from four IBV fragment subcloning vectors by homologous recombination, which contained the CMV promoter at the 5' end and the hepatitis D virus ribozyme (HDVR) sequence and bovine growth hormone polyadenylation (BGH) sequence after the polyA tail at the 3' end of the full-length cDNA. Subsequently, using the same technique, another plasmid pBAC-H120/SCS1 was also constructed, in which S1 gene from IBV H120 strain was replaced with that of a virulent SC021202 strain. Recombinant virus rH120 and rH120/SCS1 were rescued by transfecting the plasmids into BHK cells and passaged in embryonated chicken eggs. Finally, the pathogenicity of both the recombinant virus strains rH120 and rH120/SCS1 was evaluated in SPF chickens. The results showed that the chimeric rH120/SCS1 strain was not pathogenic compared with the wild-type IBV SC021202 strain and the chickens inoculated with rH120/SCS1 could resist challenge infection by IBV SC021202. Taken together, our results indicate that BAC reverse genetic system could be used to rescue IBV in vitro and IBV S1 protein alone might not be the key factor for IBV pathogenicity. KEY POINTS: ⢠BAC vector was used to construct IBV full-length cDNA by homologous recombination. ⢠Based on four subcloning vectors, a recombinant chimeric IBV H120/SCS1 was constructed and rescued. ⢠Pathogenicity of H120/SCS1 was similar to that of H120, but different to that of SC021202.
Asunto(s)
Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/patogenicidad , Proteínas Virales/genética , Animales , Embrión de Pollo , Pollos , Infecciones por Coronavirus/veterinaria , ADN Complementario , Recombinación Homóloga , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia/genéticaRESUMEN
Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATL1, ATL2, and ATL3), and ATL1 and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies. Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. We have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cerevisiae (Sey1p) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations.
Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Adipocitos/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células HEK293 , Humanos , Mamíferos , Glicoproteínas de Membrana/metabolismo , Ratones , Células 3T3 NIH , Fenotipo , Transducción de Señal , Proteínas del Envoltorio Viral/metabolismoRESUMEN
Hereditary spastic paraplegias are a large, diverse group of neurological disorders (SPG1-71) with the unifying feature of prominent lower extremity spasticity, owing to a length-dependent axonopathy of corticospinal motor neurons. The most common early-onset form of pure, autosomal dominant hereditary spastic paraplegia is caused by mutation in the ATL1 gene encoding the atlastin-1 GTPase, which mediates homotypic fusion of ER tubules to form the polygonal ER network. We have identified a p.Pro342Ser mutation in a young girl with pure SPG3A. This residue is in a critical hinge region of atlastin-1 between its GTPase and assembly domains, and it is conserved in all known eukaryotic atlastin orthologs. We produced induced pluripotent stem cells from skin fibroblasts and differentiated these into forebrain neurons to generate a human neuronal model for SPG3A. Axons of these SPG3A neurons showed impaired growth, recapitulating axonal defects in atlastin-1-depleted rat cortical neurons and impaired root hair growth in loss-of-function mutants of the ATL1 ortholog rhd3 in the plant Arabidopsis. Both the microtubule cytoskeleton and tubular ER are important for mitochondrial distribution and function within cells, and SPG3A neurons showed alterations in mitochondrial motility. Even so, it is not clear whether this change is involved in disease pathogenesis. The SPG3A axon growth defects could be rescued with microtubule-binding agents, emphasizing the importance of tubular ER interactions with the microtubule cytoskeleton in hereditary spastic paraplegia pathogenesis. The prominent alterations in axon growth in SPG3A neurons may represent a particularly attractive target for suppression in screens for novel pharmacologic agents.
Asunto(s)
Axones/efectos de los fármacos , Axones/metabolismo , Proteínas de Unión al GTP/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Membrana/genética , Paraplejía Espástica Hereditaria/genética , Secuencia de Aminoácidos , Animales , Axones/patología , Diferenciación Celular , Línea Celular , Preescolar , Análisis Mutacional de ADN , Femenino , Proteínas de Unión al GTP/química , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/metabolismo , Conformación Proteica , Transporte de Proteínas , Alineación de Secuencia , Moduladores de Tubulina/farmacologíaRESUMEN
Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.
Asunto(s)
GTP Fosfohidrolasas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Cromosomas Humanos Par 14/genética , Retículo Endoplásmico/enzimología , Exones , Femenino , Proteínas de Unión al GTP , Genes Dominantes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas de la Membrana , Datos de Secuencia Molecular , Mutación , Mutación Missense , Análisis de Secuencia de ADN , Paraplejía Espástica Hereditaria/genéticaRESUMEN
BACKGROUND: Cognitive impairment, which manifests as a limited deterioration of specific functions associated with a particular disease, can lead to a general deterioration of the patient's standard of living. Transcranial magnetic stimulation, a non-invasive neuromodulation technique, is frequently employed to treat cognitive impairment in neuropsychiatric disorders. AIM: To analyzed the state of international research on neuromodulation methods for treating cognitive impairment between 2014 and 2023, with the aim of exploring the state of research worldwide and the most recent developments in this particular area. METHODS: Articles and reviews pertaining to neuromodulation methods for cognitive impairment were examined using the web of science database between January 2014 and December 2023. Publications, nations, organizations, writers, journals, citations, and keywords data from the identified studies were systematically analyzed using the CiteSpace 6.3. R1 software. RESULTS: A total of 2371 documents with 11750 authors and 9461 institutions, with some co-occurrences, were retrieved. The quantity of yearly publications is showing an increasing trend. The United States and China have emerged as important contributors. Among the institutes, Harvard University had the highest number of publications, while Rossi S an author who is frequently cited. Initially, the primary keywords included human motor cortex, placebo-controlled trials, and serotonin reuptake inhibitors. However, the emphasis gradually moved to substance use disorders, supplementary motor areas, neural mechanisms, and exercise. CONCLUSION: The use of neuromodulation techniques to treat cognitive impairment has drawn interest from academics all around the world. This study revealed hotspots and new trends in the research of transcranial magnetic stimulation as a cognitive impairment rehabilitation treatment. These findings are hold significant potential to guide further research and thus promote transcranial magnetic stimulation as a treatment method for cognitive impairment.
RESUMEN
We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.
Asunto(s)
Proteínas Mitocondriales/genética , Mutación , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Adolescente , Secuencia de Aminoácidos , Encéfalo/metabolismo , Encéfalo/patología , Homocigoto , Humanos , Espacio Intracelular/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Eliminación de Secuencia , Paraplejía Espástica Hereditaria/metabolismoRESUMEN
STING activation by cyclic dinucleotides in mammals induces interferon- and NFκB -related gene expression, and the lipidation of LC3B at Golgi membranes. While mechanisms of the interferon response are well understood, the mechanisms of NFκB activation mediated by STING remain unclear. We report that STING activation induces K63- and M1-linked/linear ubiquitin chain formation at LC3B-associated Golgi membranes. Loss of the LUBAC E3 ubiquitin ligase prevents formation of linear, but not K63-linked ubiquitin chains or STING activation and inhibits STING-induced NFκB and IRF3-mediated signaling in monocytic THP1 cells. The proton channel activity of STING is also important for both K63 and linear ubiquitin chain formation, and NFκB- and interferon-related gene expression. Thus, LUBAC synthesis of linear ubiquitin chains regulates STING-mediated innate immune signaling.
RESUMEN
This research aims to investigate the effect of lncRNA KB-1980E6.3 on the biological behaviour of breast cancer cells under normoxic conditions and the underlying molecular mechanism. The expression of KB-1980E6.3 in breast cancer tissues and cells was detected by RT-qPCR. The proliferation, migration and invasion of cells were evaluated by CCK-8, colony formation, scratch and Transwell assays; KB-1980E6.3-related xenograft models were established for in vivo studies. The protein expression of PI3K, p-PI3K, AKT and p-AKT was validated by western blotting analysis. The levels of KB-1980E6.3 are significantly upregulated in breast cancer tissues and cells and are related to the poor prognosis. Functional research both in vivo and in vitro revealed that the downregulation of KB-1980E6.3 expression significantly decreased cell proliferation, invasion and migration, while ectopic KB-1980E6.3 expression obviously promoted these biological phenotypes. In terms of the mechanism, KB-1980E6.3 is involved in the activation of the PI3K/AKT signalling pathway. Knockdown of KB-1980E6.3 reduced the expression of the p-PI3K and p-AKT proteins, whereas KB-1980E6.3 overexpression showed the opposite result. The agonist 740Y-P and inhibitor LY294002 reversed the effect of KB-1980E6.3 knockdown and overexpression on the PI3K/AKT pathway in BC cells. KB-1980E6.3 promotes the proliferation, invasion and migration of breast cancer cells by activating PI3K/AKT signalling, which can be used as a potential target for breast cancer therapy.
Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
Dendrobium polysaccharide exhibits multiple biological activities, such as immune regulation, antioxidation, and antitumor. However, its resistance to viral infection by stimulating immunity is rarely reported. In this study, we explored the effect and mechanism of DVP-1, a novel polysaccharide from Dendrobium devonianum, in the activation of immunity. After being activated by DVP-1, the ability of mice to prevent H1N1 influenza virus infection was investigated. Results of immune regulation showed that DVP-1 significantly improved the immune organ index, lymphocyte proliferation, and mRNA expression level of cytokines, such as IL-1ß, IL-4, IL-6, and TNF-α in the spleen. Immunohistochemical results showed that DVP-1 obviously promoted the mucosal immunity in the jejunum tissue. In addition, the expression levels of TLR4, MyD88, and TRAF6 and the phosphorylation levels of TAK1, Erk, JNK, and NF-κB in the spleen were upregulated by DVP-1. The virus infection results showed that the weight loss of mice slowed down, the survival rate increased, the organ index of the lung reduced, and the virus content in the lung decreased after DVP-1 activated immunity. By activating immunity with DVP-1, the production of inflammatory cells and inflammatory factors in BALF, and alveolar as well as peribronchiolar inflammation could be prevented. The results manifested that DVP-1 could resist H1N1 influenza virus infection by activating immunity through the TLR4/MyD88/NF-κB pathway.
Asunto(s)
Dendrobium , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Citocinas/metabolismo , Dendrobium/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Polisacáridos/farmacología , ARN Mensajero , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with poor prognosis and limited treatment options. Hypoxia is a key hallmark of TNBC. Metabolic adaptation promotes progression of TNBC cells that are located within the hypoxic tumor regions. However, it is not well understood regarding the precise molecular mechanisms underlying the regulation of metabolic adaptions by hypoxia. METHODS: RNA sequencing was performed to analyze the gene expression profiles in MDA-MB-231 cell line (20% O2 and 1% O2). Expressions of Slc6a8, which encodes the creatine transporter protein, were detected in breast cancer cells and tissues by quantitative real-time PCR. Immunohistochemistry was performed to detect SLC6A8 protein abundances in tumor tissues. Clinicopathologic correlation and overall survival were evaluated by chi-square test and Kaplan-Meier analysis, respectively. Cell viability assay and flow cytometry analysis with Annexin V/PI double staining were performed to investigate the impact of SLC6A8-mediated uptake of creatine on viability of hypoxic TNBC cells. TNBC orthotopic mouse model was used to evaluate the effects of creatine in vivo. RESULTS: SLC6A8 was aberrantly upregulated in TNBC cells in hypoxia. SLC6A8 was drastically overexpressed in TNBC tissues and its level was tightly associated with advanced TNM stage, higher histological grade and worse overall survival of TNBC patients. We found that SLC6A8 was transcriptionally upregulated by p65/NF-κB and mediated accumulation of intracellular creatine in hypoxia. SLC6A8-mediated accumulation of creatine promoted survival and suppressed apoptosis via maintaining redox homeostasis in hypoxic TNBC cells. Furthermore, creatine was required to facilitate tumor growth in xenograft mouse models. Mechanistically, intracellular creatine bolstered cell antioxidant defense by reducing mitochondrial activity and oxygen consumption rates to reduce accumulation of intracellular reactive oxygen species, ultimately activating AKT-ERK signaling, the activation of which protected the viability of hypoxic TNBC cells via mediating the upregulation of Ki-67 and Bcl-2, and the downregulation of Bax and cleaved Caspase-3. CONCLUSIONS: Our study indicates that SLC6A8-mediated creatine accumulation plays an important role in promoting TNBC progression, and may provide a potential therapeutic strategy option for treatment of SLC6A8 high expressed TNBC.
Asunto(s)
Creatina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Persona de Mediana Edad , Estrés Oxidativo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
BACKGROUND: Cancer stem cells (CSCs) are considered as the major cause to tumor initiation, recurrence, metastasis, and drug resistance, driving poor clinical outcomes in patients. Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in cancer development and progression. However, limited lncRNAs involved in CSCs have been reported. METHODS: The novel lncROPM (a regulator of phospholipid metabolism) in breast CSCs (BCSCs) was identified by microarray and validated by qRT-PCR in BCSCs from breast cancer cells and tissues. The clinical significance of lncROPM was evaluated in two breast cancer cohorts and TANRIC database (TCGA-BRCA, RNAseq data). Gain- and loss-of-function assays were performed to examine the role of lncROPM on BCSCs both in vitro and in vivo. The regulatory mechanism of lncROPM was investigated by bioinformatics, RNA FISH, RNA pull-down, luciferase reporter assay, and actinomycin D treatment. PLA2G16-mediated phospholipid metabolism was determined by UHPLC-QTOFMS system. Cells' chemosensitivity was assessed by CCK8 assay. RESULTS: LncROPM is highly expressed in BCSCs. The enhanced lncROPM exists in clinic breast tumors and other solid tumors and positively correlates with malignant grade/stage and poor prognosis in breast cancer patients. Gain- and loss-of-function studies show that lncROPM is required for the maintenance of BCSCs properties both in vitro and in vivo. Mechanistically, lncROPM regulates PLA2G16 expression by directly binding to 3'-UTR of PLA2G16 to increase the mRNA stability. The increased PLA2G16 significantly promotes phospholipid metabolism and the production of free fatty acid, especially arachidonic acid in BCSCs, thereby activating PI3K/AKT, Wnt/ß-catenin, and Hippo/YAP signaling, thus eventually involving in the maintenance of BCSCs stemness. Importantly, lncROPM and PLA2G16 notably contribute to BCSCs chemo-resistance. Administration of BCSCs using clinic therapeutic drugs such as doxorubicin, cisplatin, or tamoxifen combined with Giripladib (an inhibitor of cytoplasmic phospholipase A2) can efficiently eliminate BCSCs and tumorigenesis. CONCLUSIONS: Our study highlights that lncROPM and its target PLA2G16 play crucial roles in sustaining BCSC properties and may serve as a biomarker for BCSCs or other cancer stem cells. Targeting lncROPM-PLA2G16 signaling axis may be a novel therapeutic strategy for patients with breast cancer.
Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Metabolismo de los Lípidos , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Células Madre Neoplásicas/patologíaRESUMEN
Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and ß-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of ß-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/ß-catenin/CBY1 complex, and keeps ß-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and ß-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-ß-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción Sp3/metabolismo , beta Catenina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patologíaRESUMEN
The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.
Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre Neoplásicas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genéticaRESUMEN
Cancer stem cells (CSCs) are considered the roots of cancer metastasis and recurrence (CSCs), due in part to their self-renewal and therapy resistance properties. However, the underlying mechanisms for the regulation of CSC stemness are poorly understood. Recently, increasing evidence shows that long non-coding RNAs (lncRNAs) are critical regulators for cancer cell function in various malignancies including breast cancer, but how lncRNAs regulate the function of breast cancer stem cells (BCSCs) remains to be determined. Herein, using lncRNA/mRNA microarray assays, a novel lncRNA (named lnc030) is identified, which is highly expressed in BCSCs in vitro and in vivo, as a pivotal regulator in maintaining BCSC stemness and promoting tumorigenesis. Mechanistically, lnc030 cooperates with poly(rC) binding protein 2(PCBP2) to stabilize squalene epoxidase (SQLE) mRNA, resulting in an increase of cholesterol synthesis. The increased cholesterol in turn actives PI3K/Akt signaling, which governs BCSC stemness. In summary, these findings demonstrate that a new, lnc030-based mechanism for regulating cholesterol synthesis and stemness properties of BCSCs. The lnc030-SQLE-cholesterol synthesis pathway may serve as an effective therapeutic target for BCSC elimination and breast cancer treatment.
RESUMEN
The hereditary spastic paraplegias (SPG1-33) comprise a cluster of inherited neurological disorders characterized principally by lower extremity spasticity and weakness due to a length-dependent, retrograde axonopathy of corticospinal motor neurons. Mutations in the gene encoding the large oligomeric GTPase atlastin-1 are responsible for SPG3A, a common autosomal dominant hereditary spastic paraplegia. Here we describe a family of human GTPases, atlastin-2 and -3 that are closely related to atlastin-1. Interestingly, while atlastin-1 is predominantly localized to vesicular tubular complexes and cis-Golgi cisternae, mostly in brain, atlastin-2 and -3 are localized to the endoplasmic reticulum (ER) and are most enriched in other tissues. Knockdown of atlastin-2 and -3 levels in HeLa cells using siRNA (small interfering RNA) causes disruption of Golgi morphology, and these Golgi structures remain sensitive to brefeldin A treatment. Interestingly, expression of SPG3A mutant or dominant-negative atlastin proteins lacking GTPase activity causes prominent inhibition of ER reticularization, suggesting a role for atlastin GTPases in the formation of three-way junctions in the ER. However, secretory pathway trafficking as assessed using vesicular stomatitis virus G protein fused to green fluorescent protein (VSVG-GFP) as a reporter was essentially normal in both knockdown and dominant-negative overexpression conditions for all atlastins. Thus, the atlastin family of GTPases functions prominently in both ER and Golgi morphogenesis, but they do not appear to be required generally for anterograde ER-to-Golgi trafficking. Abnormal morphogenesis of the ER and Golgi resulting from mutations in atlastin-1 may ultimately underlie SPG3A by interfering with proper membrane distribution or polarity of the long corticospinal motor neurons.