RESUMEN
The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.
Asunto(s)
Factores de Transcripción ARNTL , Sistema Hipotálamo-Hipofisario , Ovario , Reproducción , Animales , Femenino , Ratones , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ciclo Estral , Fertilidad , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ovario/metabolismo , Progesterona/metabolismo , Prolactina/metabolismoRESUMEN
Antimicrobial resistance poses the most formidable challenge to public health, with plasmid-mediated horizontal gene transfer playing a pivotal role in its global spread. Bisphenol compounds (BPs), a group of environmental contaminants with endocrine-disrupting properties, are extensively used in various plastic products and can be transmitted to food. However, the impact of BPs on the plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) has not yet been elucidated. Herein, we demonstrate that BPs could promote the conjugative transfer frequency of RP4-7 and clinically multidrug-resistant plasmids. Furthermore, the promoting effect of BPs on the plasmid transfer was also confirmed in a murine model. Microbial diversity analysis of transconjugants indicated an increase in α diversity in the BPAF-treated group, along with the declined richness of some beneficial bacteria and elevated richness of Faecalibaculum rodentium, which might serve as an intermediate repository for resistance plasmids. The underlying mechanisms driving the enhanced conjugative transfer upon BPAF treatment include exacerbated oxidative stress, disrupted membrane homeostasis, augmented energy metabolism, and the increased expression of conjugation-related genes. Collectively, our findings highlight the potential risk associated with the exacerbated dissemination of AMR both in vitro and in vivo caused by BPs exposure.
RESUMEN
We present a case study highlighting prenatal ultrasound findings in monozygotic twins with chromosome 17q12 deletion syndrome. Fetus A exhibited bilateral fetal pyelectasis and talipes equinovarus, while fetus B showed hyperechogenic kidneys. Despite sharing the same de novo variant, the twins displayed distinct clinical phenotypes, suggesting the presence of non-genetic factors influencing the phenotypic variability of this syndrome. This case represents the first documented instance of prenatally identified identical twins affected by 17q12 deletion syndrome.
RESUMEN
The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 µg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.
Asunto(s)
Escherichia coli , Fenoles , Plásmidos , Sulfonas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Sulfonas/farmacología , Plásmidos/genética , Especies Reactivas de Oxígeno/metabolismo , Transformación Bacteriana , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal , Farmacorresistencia Bacteriana/genética , Compuestos de Bencidrilo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genéticaRESUMEN
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
RESUMEN
The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.
Asunto(s)
COVID-19 , Desinfectantes , Humanos , Antibacterianos/farmacología , Escherichia coli/genética , Desinfectantes/toxicidad , Farmacorresistencia Bacteriana/genética , Plásmidos , Genes Bacterianos , Bacterias , Compuestos de Benzalconio/farmacologíaRESUMEN
BACKGROUND: Renal-hepatic-pancreatic dysplasia type 1 (RHPD1) is a rare sporadic and autosomal recessive disorder with unknown incidence. RHPD1 is caused by biallelic pathogenic variants in NPHP3, which encode nephrocystin, an important component of the ciliary protein complex. CASE PRESENTATION: In this case report, we describe a male newborn who was confirmed by ultrasound to have renal enlargement with multiple cysts, pancreatic enlargement with cysts, and increased liver echogenicity, leading to the clinical diagnosis of RHPD. In addition, a compound heterozygous pathogenic variant, namely, NPHP3 c.1761G > A (p. W587*) and the c.69delC (p. Gly24Ala24*11) variant, was detected by WES. The patient was clinically and genetically diagnosed with RHPD1. At 34 h of life, the infant died of respiratory insufficiency. CONCLUSION: This is the first published case of RHPD1 in China. This study broadens the known range of RHPD1 due to NPHP3 pathogenic variants.
Asunto(s)
Cinesinas , Anomalías Múltiples , Genotipo , Humanos , Lactante , Recién Nacido , Riñón/anomalías , Enfermedades Renales Quísticas , Hígado/anomalías , Masculino , Mutación , Páncreas/anomalíasRESUMEN
Plasmid-mediated conjugative transfer has emerged as a major driver accounting for the dissemination of antibiotic resistance genes (ARGs). In addition to the use of antimicrobial agents, there is growing evidence that non-antibiotic factors also play an important role. Pesticides are widely used to protect crops against vectors of diseases, and are indispensable agents in agricultural production, whereas the impact of pesticide pollution on the transmission of antimicrobial resistance remains poorly understood. Here we reveal that the pesticides at environmentally relevant concentrations, especially cyromazine (Cyr) and kresoxim-methyl (Kre), greatly facilitate the conjugative transfer of antibiotic-resistance plasmids carrying clinically important ARGs. Mechanistic studies indicate that Cyr and Kre treatments trigger reactive oxygen species (ROS) production and SOS response, increase membrane permeability, upregulate bacterial proton motive force (PMF) and promote ATP supply. Further non-targeted metabolomics and biochemical analysis demonstrate that the addition of Cyr and Kre accelerates tricarboxylic acid (TCA) cycle and electron transport chain (ETC), thereby activating bacterial energy metabolism. In the constructed soil model, we prove that two pesticides contribute to the dissemination of resistance plasmids in the soil microbiota. 16S rRNA sequencing analyses indicate that pesticides alter transconjugant microbial communities, and enable more opportunistic pathogens, such as Pseudomonas and Enterobacter, to acquire the multidrug resistance plasmids. Collectively, our work indicates the potential risk in accelerating the spread of antimicrobial resistance owing to pesticide pollution, highlighting the importance of continuous surveillance of pesticide residues in complex environmental settings.
Asunto(s)
Plaguicidas , Plásmidos , Plásmidos/genética , Plaguicidas/toxicidad , Microbiología del Suelo , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Conjugación Genética/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/toxicidad , Antibacterianos/farmacología , Microbiota/efectos de los fármacosRESUMEN
Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various inflammatory diseases. Roflumilast, apremilast, and crisaborole have been developed and approved for the treatment of chronic obstructive pulmonary disease psoriatic arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet the role of PDE4 inhibitors in these diseases remains inadequately explored. This review elucidates the clinical applications and anti-inflammatory mechanisms of PDE4 inhibitors, as well as their potential protective effects on vascular diseases. Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are discussed. This article emphasizes the need for further exploration of the therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
RESUMEN
BACKGROUND: Noonan syndrome (NS) due to the RRAS2 gene, the pathogenic variant is an extremely rare RASopathies. Our objective was to identify the potential site of RRAS2, combined with the literature review, to find the correlation between clinical phenotype and genotype. De novo missense mutations affect different aspects of the RRAS2 function, leading to hyperactivation of the RAS-MAPK signaling cascade. METHODS: Conventional G-banding was used to analyze the chromosome karyotype of the patient. Copy number variation sequencing (CNV-seq) was used to detect the chromosomal gene microstructure of the patient and her parents. The exomes of the patient and her parents were sequenced using trio-based whole exome sequencing (trio-WES) technology. The candidate variant was verified by Sanger sequencing. The pathogenicity of the variant was predicted with a variety of bioinformatics tools. RESULTS: Chromosome analysis of the proband revealed 46, XX, and no abnormality was found by CNV-seq. After sequencing and bioinformatics filtering, the variant of RRAS2(c.67G>T; p. Gly23Cys) was found in the proband, while the mutation was absent in her parents. To the best of our knowledge, our patient was with the typical Noonan syndrome, such as short stature, facial dysmorphism, and developmental delay. Furthermore, our study is the first case of NS with embryonal rhabdomyosarcoma (ERMS) caused by the RRAS2 gene mutation reported in China. CONCLUSIONS: Our investigations suggested that the heterozygous missense of RRAS2 may be a potential causal variant in a rare cause of Noonan syndrome, expanding our understanding of the causally relevant mutations for this disorder.
Asunto(s)
Proteínas de Unión al GTP Monoméricas , Síndrome de Noonan , Rabdomiosarcoma Embrionario , Humanos , Femenino , Síndrome de Noonan/patología , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/complicaciones , Variaciones en el Número de Copia de ADN , Mutación , Genotipo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/genéticaRESUMEN
BACKGROUND: Contiguous gene deletion in the short arm of chromosome 4 is linked to various neurodevelopmental disorders. METHODS: In this study, we conducted peripheral blood chromosome G-banding karyotyping and whole-exome sequencing (WES) on a proband presenting with anal atresia, global developmental delay, lymphocytosis, and other multisystem anomalies. Additionally, chromosome G-banding karyotyping was also carried out on the proband's parents and brother. RESULTS: The 7-month-old proband was found to have a 26.738 Mb 4p15.33-p14 deletion as identified by chromosome G-banding karyotyping and WES. CONCLUSION: We identified a patient with proximal 4p deletion syndrome by karyotype and WES analysis, which might explain some of his phenotypes. Our research enhances clinicians' knowledge of this rare condition, and offers valuable genetic counseling to the affected family. Further research is necessary to identify the causative gene or critical region associated with proximal 4p deletion syndrome.
Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 4 , Humanos , Masculino , Lactante , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cromosomas Humanos Par 4/genética , Fenotipo , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Cariotipificación , Secuenciación del ExomaRESUMEN
BACKGROUND: MECP2 duplication syndrome (MDS) is a rare X-linked genomic disorder that primarily affects males. It is characterized by delayed or absent speech development, severe motor and cognitive impairment, and recurrent respiratory infections. MDS is caused by the duplication of a chromosomal region located on chromosome Xq28, which contains the methyl CpG binding protein-2 (MECP2) gene. MECP2 functions as a transcriptional repressor or activator, regulating genes associated with nervous system development. The objective of this study is to provide a clinical description of MDS, including imaging changes observed from the fetal period to the neonatal period. METHODS: Conventional G-banding was employed to analyze the chromosome karyotypes of all pedigrees under investigation. Subsequently, whole exome sequencing (WES), advanced biological information analysis, and pedigree validation were conducted, which were further confirmed by copy number variation sequencing (CNV-seq). RESULTS: Chromosome karyotype analysis revealed that a male patient had a chromosome karyotype of 46,Y,dup(X)(q27.2q28). Whole-exon duplication in the MECP2 gene was revealed through WES results. CNV-seq validation confirmed the presence of Xq27.1q28 duplicates spanning 14.45 Mb, which was inherited from a mild phenotype mother. Neither the father nor the mother's younger brother carried this duplication. CONCLUSION: In this study, we examined a male child in a family who exhibited developmental delay and recurrent respiratory tract infections as the main symptoms. We conducted thorough family investigations and genetic testing to determine the underlying causes of the disease. Our findings will aid in early diagnosis, genetic counseling for male patients in this family, as well as providing prenatal diagnosis and reproductive guidance for female carriers.
Asunto(s)
Variaciones en el Número de Copia de ADN , Duplicación de Gen , Discapacidad Intelectual Ligada al Cromosoma X , Niño , Femenino , Humanos , Recién Nacido , Masculino , China , Discapacidad Intelectual Ligada al Cromosoma X/genética , Linaje , Proteína 2 de Unión a Metil-CpG/genéticaRESUMEN
Background: Tetrahydrobiopterin (BH4) deficiency is a rare cause of hyperphenylalaninemia (HPA). The incidence of this condition varies based on region and ethnicity. In the early stages, patients typically do not exhibit any symptoms, and HPA is identified only through newborn screening for diseases. It is important to distinguish BH4 deficiency from phenylketonuria (PKU, MIM # 261600). Timely diagnosis and treatment of BH4 deficiency are crucial for the prognosis of patients. Case presentation: We present two rare cases of Chinese Tibetan children with BH4D, diagnosed through biochemical tests and genetic sequencing. Case 1 is a male infant, 2 months old, with a newborn screening (NBS) Phe level of 1212 µmol/L (reference range <120 µmol). The biopterin(B) level was 0.19 mmol/molCr (reference range: 0.42-1.92 mmol/molCr), with a B% of 5.67% (reference range: 19.8%-50.3%). Gene sequencing revealed a homozygous missense variant [NM_000317.3 (PTS): c.259C > T (p.Pro87Ser), rs104894276, ClinVar variation ID: 480]. The patient was treated with a Phe-reduced diet and oral sapropterin, madopar and is currently 3 years and 4 months old, showing mild global developmental delay. Case 2 is a 40-day-old female infant with a Phe level of 2442.11 µmol/L and dihydropteridine reductase (DHPR) activity of 0.84 nmol/(min. 5 mm disc) (reference range: 1.02-3.35 nmol/min.5 mm disc. Gene sequencing revealed a compound heterozygous genotype [NM_000320.3(QDPR): c.68G > A (p.Gly23Asp), rs104893863, ClinVar Variation ID: 490] and [NM_000320.3(QDPR) c.419C > A (p. Ala140Asp), ClinVar ID: 2444501]. The patient was treated with a Phe-reduced diet and oral madopar, 5-hydroxytryptophan. At the age of 1 year, she exhibited severe global developmental delay with seizures. Conclusion: We identified and treated two cases of BH4D in Tibetan populations in China, marking the first confirmed instances. Our report emphasizes the significance of conducting differential diagnosis tests for BH4D.
RESUMEN
The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.
Asunto(s)
COVID-19 , Desinfectantes , Humanos , Antibacterianos/farmacología , Desinfectantes/farmacología , Genes Bacterianos , Pandemias , Farmacorresistencia Microbiana/genética , Guanidinas , Transferencia de Gen Horizontal , Plásmidos/genéticaRESUMEN
BACKGROUND: To systematically evaluate the methodological quality of the current up-to-date guidelines pertaining to choledocholithiasis, we conducted a comprehensive analysis of key recommendations and corresponding evidence, focusing on the heterogeneity among these guidelines. METHOD: Systematic searches across various databases were performed to identify the latest guidelines. The identified guidelines, which met the inclusion criteria, underwent evaluation using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool. The key recommendations and evidence from the included guidelines were extracted and reclassified using the Oxford Centre for Evidence-Based Medicine (OCEBM) grading system, and the obtained results were analyzed. RESULTS: Nine guidelines related to choledocholithiasis were included in this study, out of which 4 achieved an overall standardized score of more than 60%, indicating their suitability for recommendation. Upon closer examination of the main recommendations within these guidelines, we discovered significant discrepancies concerning the utilization of similar treatment techniques for different diseases or different treatment methods under comparable conditions, and discrepancies in the recommended treatment duration. High-quality research evidence was lacking, and some recommendations either failed to provide supporting evidence or cited inappropriate and low-level evidence. CONCLUSION: The quality of guidelines pertaining to choledocholithiasis is uneven. Recommendations for the treatment of choledocholithiasis demonstrate considerable disparities among the guidelines, particularly regarding the utilization of endoscopic retrograde cholangiopancreatography as a treatment method and the management approaches for difficult stone cases. Improvements by guideline developers for these factors contributing to the heterogeneity would be a reasonable approach to further update the guidelines for cholangiolithiasis.
Asunto(s)
Coledocolitiasis , Guías de Práctica Clínica como Asunto , Humanos , Coledocolitiasis/diagnóstico , Coledocolitiasis/cirugía , Medicina Basada en la Evidencia , Guías de Práctica Clínica como Asunto/normasRESUMEN
Vulto-van Silfhout-de Vries syndrome (VSVS; MIM 615828) is an extremely rare autosomal dominant disorder with unknown incidence. It is always caused by de novo heterozygous pathogenic variants in the DEAF1 gene, which encodes deformed epidermal autoregulatory factor-1 homology. VSVS is characterized by mild to severe intellectual disability (ID) and/or global developmental delay (GDD), seriously limited language expression, behavioral abnormalities, somnipathy, and reduced pain sensitivity. In this study, we present a Chinese boy with moderate GDD and ID, severe expressive language impairment, behavioral issues, autism spectrum disorder (ASD), sleeping dysfunction, high pain threshold, generalized seizures, imbalanced gait, and recurrent respiratory infections as clinical features. A de novo heterozygous pathogenic missense variant was found in the 5th exon of DEAF1 gene, NM_021008.4 c.782G>C (p. Arg261Pro) variant by whole exome sequencing (WES). c.782G>C had not been previously reported in genomic databases and literature. According to the ACMG criteria, this missense variant was considered to be "Likely Pathogenic". We diagnosed the boy with VSVS both genetically and clinically. At a follow-up of 2.1 years, his seizures were well controlled after valproic acid therapy. In addition, the child's recurrent respiratory infections improved at 3.5 years of age, which has not been reported in previous individuals. Maybe the recurrent respiratory infections like sleep problems reported in the literature are not permanent but may improve naturally over time. The literature review showed that there were 35 individuals with 28 different de novo pathogenic variants of DEAF1-related VSVS. These variants were mostly missense and the clinical manifestations were similar to our patient. Our study expands the genotypic and phenotypic profiles of de novo DEAF1.