Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005553

RESUMEN

A sandwiched piezoelectric accelerometer is developed and optimized for acquiring low-frequency, wide-band seismic data. The proposed accelerometer addresses the challenges of capturing seismic signals in the low-frequency range while maintaining a broad frequency response through the design of multi-stage charge amplifiers and a sandwiched structure. The device's design, fabrication process, and performance evaluation are discussed in detail. Experimental results demonstrate its performance in amplitude and phase response characteristics.

2.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36298260

RESUMEN

Underwater target detection and identification technology are currently two of the most important research directions in the information disciplines. Traditionally, underwater target detection technology has struggled to meet the needs of current engineering. However, due to the large manifold error of the underwater sonar array and the complexity of ensuring long-term signal stability, traditional high-resolution array signal processing methods are not ideal for practical underwater applications. In conventional beamforming methods, when the signal-to-noise ratio is lower than -43.05 dB, the general direction can only be vaguely identified in the general direction. To address the above challenges, this paper proposes a beamforming method based on a deep neural network. Through preprocessing, the space-time domain of the target sound signal is converted into two-dimensional data in the angle-time domain. Subsequently, we trained the network with enough sample datasets. Finally, high-resolution recognition and prediction of two-dimensional images are realized. The results of the test dataset in this paper demonstrate the effectiveness of the proposed method, with a minimum signal-to-noise ratio of -48 dB.


Asunto(s)
Redes Neurales de la Computación , Sonido , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
3.
Comput Intell Neurosci ; 2022: 1688233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262615

RESUMEN

An accurate seismic facies analysis (SFA) can provide insight into the subsurface sedimentary facies and has guiding significance for geological exploration. Many machine learning algorithms, including unsupervised, supervised, and deep learning algorithms, have been developed successfully for SFA over the past decades. However, SFA and facies classification are still challenging tasks due to the complex characteristics of geological and seismic data. A multiattribute SOM-K-means clustering algorithm, which implements a two-stage clustering by using multiple geological attributes, is proposed and applied for SFA. The proposed algorithm can effectively extract complementary features from the multiple attribute volumes and comprehensively use the different attributes to improve the recognition ability of seismic facies. Experimental results show that the proposed algorithm improves clustering accuracy and can be used as an effective and powerful tool for SFA.


Asunto(s)
Algoritmos , Humanos , Facies , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA