RESUMEN
Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218â S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1â V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.
RESUMEN
Scar formation is a common physiological process that occurs after injury, but in some cases, pathological scars can develop, leading to serious physiological and psychological effects. Unfortunately, there are currently no effective means to intervene in scar formation, and the structural features of scars and their unclear mechanisms make prevention and treatment even more challenging. However, the emergence of nanotechnology in drug delivery systems offers a promising avenue for the prevention and treatment of scars. Nanomaterials possess unique properties that make them well suited for addressing issues related to transdermal drug delivery, drug solubility, and controlled release. Herein, we summarize the recent progress made in the use of nanotechnology for the prevention and treatment of scars. We examine the mechanisms involved and the advantages offered by various types of nanomaterials. We also highlight the outstanding challenges and questions that need to be addressed to maximize the potential of nanotechnology in scar intervention. Overall, with further development, nanotechnology could significantly improve the prevention and treatment of pathological scars, providing a brighter outlook for those affected by this condition.
Asunto(s)
Cicatriz , Nanoestructuras , Humanos , Cicatriz/tratamiento farmacológico , Cicatriz/prevención & control , Cicatriz/patología , Sistema de Administración de Fármacos con Nanopartículas , Nanotecnología , Nanoestructuras/química , Sistemas de Liberación de MedicamentosRESUMEN
In electrical impedance tomography (EIT) detection of industrial two-phase flows, the Gauss-Newton algorithm is often used for imaging. In complex cases with multiple bubbles, this method has poor imaging accuracy. To address this issue, a new algorithm called the artificial bee colony-optimized radial basis function neural network (ABC-RBFNN) is applied to industrial two-phase flow EIT for the first time. This algorithm aims to enhance the accuracy of image reconstruction in electrical impedance tomography (EIT) technology. The EIDORS-v3.10 software platform is utilized to generate electrode data for a 16-electrode EIT system with varying numbers of bubbles. This generated data is then employed as training data to effectively train the ABC-RBFNN model. The reconstructed electrical impedance image produced from this process is evaluated using the image correlation coefficient (ICC) and root mean square error (RMSE) criteria. Tests conducted on both noisy and noiseless test set data demonstrate that the ABC-RBFNN algorithm achieves a higher ICC value and a lower RMSE value compared to the Gauss-Newton algorithm and the radial basis function neural network (RBFNN) algorithm. These results validate that the ABC-RBFNN algorithm exhibits superior noise immunity. Tests conducted on bubble models of various sizes and quantities, as well as circular bubble models, demonstrate the ABC-RBFNN algorithm's capability to accurately determine the size and shape of bubbles. This outcome confirms the algorithm's generalization ability. Moreover, when experimental data collected from a 16-electrode EIT experimental device is employed as test data, the ABC-RBFNN algorithm consistently and accurately identifies the size and position of the target. This achievement establishes a solid foundation for the practical application of the algorithm.
RESUMEN
Challenges associated with stretchable optoelectronic devices, such as pixel size, power consumption and stability, severely brock their realization in high-resolution digital imaging. Herein, we develop a universal detachable interface technique that allows uniform, damage-free and reproducible integration of micropatterned stretchable electrodes for pixel-dense intrinsically stretchable organic transistor arrays. Benefiting from the ideal heterocontact and short channel length (2 µm) in our transistors, switching current ratio exceeding 106, device density of 41,000 transistors/cm2, operational voltage down to 5 V and excellent stability are simultaneously achieved. The resultant stretchable transistor-based image sensors exhibit ultrasensitive X-ray detection and high-resolution imaging capability. A megapixel image is demonstrated, which is unprecedented for stretchable direct-conversion X-ray detectors. These results forge a bright future for the stretchable photonic integration toward next-generation visualization equipment.
RESUMEN
Nitrogen is a fundamental component for building amino acids and proteins, playing a crucial role in the growth and development of plants. Leaf nitrogen concentration (LNC) serves as a key indicator for assessing plant growth and development. Monitoring LNC provides insights into the absorption and utilization of nitrogen from the soil, offering valuable information for rational nutrient management. This, in turn, contributes to optimizing nutrient supply, enhancing crop yields, and minimizing adverse environmental impacts. Efficient and non-destructive estimation of crop LNC is of paramount importance for on-field crop management. Spectral technology, with its advantages of repeatability and high-throughput observations, provides a feasible method for obtaining LNC data. This study explores the responsiveness of spectral parameters to soybean LNC at different vertical scales, aiming to refine nitrogen management in soybeans. This research collected hyperspectral reflectance data and LNC data from different leaf layers of soybeans. Three types of spectral parameters, nitrogen-sensitive empirical spectral indices, randomly combined dual-band spectral indices, and "three-edge" parameters, were calculated. Four optimal spectral index selection strategies were constructed based on the correlation coefficients between the spectral parameters and LNC for each leaf layer. These strategies included empirical spectral index combinations (Combination 1), randomly combined dual-band spectral index combinations (Combination 2), "three-edge" parameter combinations (Combination 3), and a mixed combination (Combination 4). Subsequently, these four combinations were used as input variables to build LNC estimation models for soybeans at different vertical scales using partial least squares regression (PLSR), random forest (RF), and a backpropagation neural network (BPNN). The results demonstrated that the correlation coefficients between the LNC and spectral parameters reached the highest values in the upper soybean leaves, with most parameters showing significant correlations with the LNC (p < 0.05). Notably, the reciprocal difference index (VI6) exhibited the highest correlation with the upper-layer LNC at 0.732, with a wavelength combination of 841 nm and 842 nm. In constructing the LNC estimation models for soybeans at different leaf layers, the accuracy of the models gradually improved with the increasing height of the soybean plants. The upper layer exhibited the best estimation performance, with a validation set coefficient of determination (R2) that was higher by 9.9% to 16.0% compared to other layers. RF demonstrated the highest accuracy in estimating the upper-layer LNC, with a validation set R2 higher by 6.2% to 8.8% compared to other models. The RMSE was lower by 2.1% to 7.0%, and the MRE was lower by 4.7% to 5.6% compared to other models. Among different input combinations, Combination 4 achieved the highest accuracy, with a validation set R2 higher by 2.3% to 13.7%. In conclusion, by employing Combination 4 as the input, the RF model achieved the optimal estimation results for the upper-layer LNC, with a validation set R2 of 0.856, RMSE of 0.551, and MRE of 10.405%. The findings of this study provide technical support for remote sensing monitoring of soybean LNCs at different spatial scales.
RESUMEN
Stretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors. The resulting device achieves trichromatic photoadaptation and a rapid adaptive speed (<150 s) beyond human eyes (3 ~ 30 min) even under 100% mechanical strain. When acted as an artificial synapse, the device can operate at an ultra-low energy consumption (15 aJ) (far below the human brain of 1 ~ 10 fJ) with a high paired-pulse facilitation index of 270% (one of the best figures of merit in stretchable synaptic phototransistors). Furthermore, adaptive optical imaging is achieved by the strain-insensitive perovskite films, accelerating the implementation of next-generation neuromorphic vision systems.
RESUMEN
A 1:10 scale model tunnel with a length, height and width of 9 m, 0.6 m and 0.8 m, respectively, was set up in this paper. A water curtain system was installed in the model to investigate the effect of water curtain systems on smoke flow and heat propagation. A reduced-scale experimental and theoretical study was carried out by varying the heat release rate of the fire source, the water curtain pressure, and the number of water curtain rows. A series of tests were carried out for various setups to quantify each mechanism of interaction between the water mist and hot smoke, to propose a method for qualitatively analysing water curtain systems blocking the propagation of heat radiation and the flow of smoke from combustion, and to propose a method for predicting heat fluxes. The study found that the pressure of the water curtain, the number of rows, and the heat release rate of the fire source all had an effect on the smoke blocking effect of the water curtain system. This effect decreased as the heat release rate of the fire source increased and increased significantly with the pressure of the water curtain and the number of rows. The smoke blocking effect was quantified using conservation of momentum by establishing a dimensionless parameter R to represent the ratio of water curtain momentum to smoke momentum, as well as the ratio of heat flux before and after the water curtain to represent the smoke blocking capacity [Formula: see text] of the water curtain. The smoke blockage rate [Formula: see text] ranges between 40 and 75%, and the smoke blockage rate increases as the momentum R increases. Finally, in tunnel fires, a predictive model for the attenuation of heat radiation by water curtains has been developed, providing theoretical support for the quantitative study of the smoke and thermal blockage effects of water curtains, which is beneficial to the protection of human life in confined spaces.
Asunto(s)
Incendios , Agua , Humanos , Calor , Modelos TeóricosRESUMEN
Stretchability is a prerequisite for electronic skin devices. However, state-of-the-art stretchable thin-film transistors do not possess sufficiently low operating voltages and good stability, significantly limiting their use in real-world biomedical applications. Herein, a van der Waals-controlling elastomer/carbon quantum dot interfacial polarization methodology is proposed to form a hybrid polymer dielectric with 620% tensile strain and large-area film uniformity (>A4 paper size). Using the hybrid polymer dielectrics, the prepared intrinsically stretchable organic thin-film transistors demonstrate a low operating voltage below 5 V, 100% strain tolerance, and excellent operational stability, as well as a high on-current/off-current ratio of 105 and a steep subthreshold slope of 500 mV dec-1 . Based on this device technology, an amplifier with a high gain of 90 V V-1 among the highest values of reported stretchable transistors is realized. This amplifier is at the first time applied to detect human electrophysical signals with an output signal amplitude of over 0.2 V, which even outperforms other types of the state-of-the-art organic amplifiers for human electrophysiology monitoring. This stretchable device technology sufficiently meets the safety and portability requirements of wearable biomedical applications, opening a new opportunity to e-skin with signal control and amplification capabilities.
RESUMEN
AIM: To compare the proliferation and osteogenic differentiation of osteoblasts between newborn rats (1d group) and two-week-old rats (14d group) and to clarify the mechanism underlying these effects. METHOD: The endogenous expression of osteogenic marker genes was detected by qPCR, including ALP, OCN, Col1a1, and Runx2. The osteoblasts proliferation was evaluated by EdU assay and Western Blotting [PCNA and Cyclin D1]. ALP activities in osteoblasts were detected using a PNPP kit, ALP staining and qPCR. Mineralized nodule formation and intracellular calcium levels were assessed by Alizarin Red staining and calcium colorimetric assay respectively while OCN, Col1a1 and Runx2 levels in osteoblasts were analyzed by immunostaining. Osteogenesis-associated pathways including Wnt/ß-Catenin, Akt/PPAR and Smad were analyzed via Western Blotting. RESULT: Endogenous ALP, OCN, Col1a1, and Runx2 expression levels were significantly higher in osteoblasts from 14d group than those from 1d group. After treatment with osteogenic induction medium, osteoblast proliferation, ALP activity, mineralized nodule formation, and intracellular calcium levels were markedly increased in osteoblasts from 1d group, with similar results also being observed for the expression of OCN, Col1a1, and Runx2. Wnt3a, ß-catenin, p-Akt, p-Smad1/5/8, and p-Smad5 protein levels were also higher in osteoblasts from 1d group relative to those from 14d group, while the expression of PPARγ was lower. CONCLUSION: The superior osteogenic differentiation capacity in osteoblasts was associated with the higher activation levels of Wnt/ß-Catenin, Akt/PPAR and Smad signaling pathways, and the enhanced proliferative activity in osteoblasts from 1d group.
Asunto(s)
Osteogénesis , Vía de Señalización Wnt , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Osteoblastos , Osteogénesis/fisiología , RatasRESUMEN
Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and rheumatoid arthritis are the two most common types. The high prevalence of arthritis causes severe burdens on individuals, society and the economy. Currently, the primary treatment of arthritis is to relieve symptoms, but the development of arthritis cannot be effectively prevented. Studies have revealed that the disrupted balance of enzymes determines the pathological changes in arthritis. In particular, the increased levels of matrix metalloproteinases and the decreased expression of endogenous antioxidant enzymes promote the progression of arthritis. New therapeutic strategies have been developed based on the expression characteristics of these enzymes. Biomaterials have been designed that are responsive when the destructive enzymes MMPs are increased or have the activities of the antioxidant enzymes that play a protective role in arthritis. Here, we summarize recent studies on biomaterials associated with MMPs and antioxidant enzymes involved in the pathological process of arthritis. These enzyme-related biomaterials have been shown to be beneficial for arthritis treatment, but there are still some problems that need to be solved to improve efficacy, especially penetrating the deeper layer of articular cartilage and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related nano-therapy is challenging and promising for arthritis treatment.
RESUMEN
Osteoarthritis (OA) is an inflammatory and degenerative joint disease with severe effects on individuals, society, and the economy that affects millions of elderly people around the world. To date, there are no effective treatments for OA; however, there are some treatments that slow or prevent its progression. Polyfunctional nanosystems have many advantages, such as controlled release, targeted therapy and high loading rate, and have been widely used in OA treatment. Previous mechanistic studies have revealed that inflammation and ROS are interrelated, and a large number of studies have demonstrated that ROS play an important role in different types of OA development. In this review article, we summarize third-generation ROS-sensitive nanomaterials that scavenge excessive ROS from chondrocytes and osteoclasts in vivo. We only focus on polymer-based nanoparticles (NPs) and do not review the effects of drug-loaded or heavy metal NPs. Mounting evidence suggests that polyfunctional nanosystems will be a promising therapeutic strategy in OA therapy due to their unique characteristics of being sensitive to changes in the internal environment.
RESUMEN
Osteoarthritis (OA) is a degenerative joint disease and is the main cause of chronic pain and functional disability in adults. Articular cartilage is a hydrated soft tissue that is composed of normally quiescent chondrocytes at a low density, a dense network of collagen fibrils with a pore size of 60-200 nm, and aggrecan proteoglycans with high-density negative charge. Although certain drugs, nucleic acids, and proteins have the potential to slow the progression of OA and restore the joints, these treatments have not been clinically applied owing to the lack of an effective delivery system capable of breaking through the cartilage barrier. Recently, the development of nanotechnology for delivery systems renders new ideas and treatment methods viable in overcoming the limited penetration. In this review, we focus on current research on such applications of nanotechnology, including exosomes, protein-based cationic nanocarriers, cationic liposomes/solid lipid nanoparticles, amino acid-based nanocarriers, polyamide derivatives-based nanocarriers, manganese dioxide, and carbon nanotubes. Exosomes are the smallest known nanoscale extracellular vesicles, and they can quickly deliver nucleic acids or proteins to the required depth. Through electrostatic interactions, nanocarriers with appropriate balance in cationic property and particle size have a strong ability to penetrate cartilage. Although substantial preclinical evidence has been obtained, further optimization is necessary for clinical transformation. STATEMENT OF SIGNIFICANCE: The dense cartilage matrix with high-negative charge was associated with reduced therapeutic effect in osteoarthritis patients with deep pathological changes. However, a systematic review in nanodevices for deep cartilage penetration is still lacking. Current approaches to assure penetration of nanosystems into the depth of cartilage were reviewed, including nanoscale extracellular vesicles from different cell lines and nanocarriers with appropriate balance in cationic property and size particle. Moreover, nanodevices entering clinical trials and further optimization were also discussed, providing important guiding significance to future research.
Asunto(s)
Cartílago Articular , Nanotubos de Carbono , Ácidos Nucleicos , Osteoartritis , Adulto , Humanos , Osteoartritis/patología , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Cationes , Proteínas/farmacologíaRESUMEN
The optoelectronic skin is acknowledged as the world's current cutting-edge technology in the fields of wearable healthcare monitoring, soft robotics, artificial retinas, and so on. However, the difficulty in preparing stretchable photosensitive polymers and the high-crystallization nature of most reported photosensitive materials (such as perovskites) severely restrict the development of skin-like optoelectronic devices. Herein, a surface energy-induced self-assembly methodology is proposed to form easily transferrable and flexible perovskite quantum dot (PQD) films with a worm-like morphology. Furthermore, intrinsically stretchable phototransistors (ISTPTs) are fabricated based on a stretchable photosensitive layer heterojunction consisting of worm-like PQD films and hybrid polymer semiconductors. The obtained ISTPTs display highly sensitive response to high-energy photons of X-ray (with a detection limit of 79 nGy s-1 , that is 560 times lower than commercial medical chest X-ray diagnosis) and ultraviolet (with photosensitivity of 5 × 106 and detectable light intensity of 50 nW cm-2 among the highest performance of reported photodetectors). In addition, these ISTPTs demonstrate desirable e-skin characteristics with high strain tolerance, high sensing specificity, high optical transparency, and good skin conformability. The surface energy-induced self-assembly methodology for the preparation of ISTPTs is a critical demonstration to enable low-cost and high-performance optoelectronic skins.
Asunto(s)
Óxidos , Polímeros , Compuestos de Calcio , Polímeros/química , Piel , TitanioRESUMEN
The present study was designed to explore the relationship between thrombin and catabolic activity in chondrocytes. Primary rat chondrocytes were cultured for 24 h with rat serum (RS), rat plasma (RP), or rat plasma supplemented with thrombin (RPT). RNA-sequencing was then performed. Cell proliferation was analyzed by EdU uptake, CCK-8 assays and protein-protein interaction (PPI) network of proliferation-related genes. Heatmaps were used to visualize differences in gene expression. Gene Ontology (GO) enrichment analyses of up- and down-regulated differentially expressed genes were conducted. Molecular probes were used to label the endoplasmic reticulum in chondrocytes from three treatment groups. Immunofluorescence and Safranin O staining were used to assess type II collagen (Col2a1) expression and proteoglycan synthesis, whereas Lox expression was assessed by immunocytochemistry. The expression of enzymes involved in the synthesis and maturation of extracellular matrix (ECM) components and chemokines were measured by qPCR while matrix metalloproteinases (MMPs) levels were evaluated by Western blotting. Relevant nodules were selected through further PPI network analyses. A total of 727 and 1162 genes were up- and down-regulated based on the Venn diagrams comparison among groups. Thrombin was thus able to promote chondrocyte proliferation and a shift towards fibrotic morphology, while upregulating MMPs and chemokines linked to ECM degradation. In addition, thrombin decreased the enzyme expression involved in the synthesis and maturation of ECM.
Asunto(s)
Condrocitos/citología , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica/métodos , Trombina/farmacología , Animales , Proliferación Celular , Células Cultivadas , Quimiocinas/genética , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Medios de Cultivo/química , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Metaloproteinasas de la Matriz/genética , Plasma/química , Cultivo Primario de Células , Mapas de Interacción de Proteínas , Ratas , Análisis de Secuencia de ARN , Suero/químicaRESUMEN
Polymer semiconductors are promising candidates for wearable and skin-like X-ray detectors due to their scalable manufacturing, adjustable molecular structures and intrinsic flexibility. Herein, we fabricated an intrinsically stretchable n-type polymer semiconductor through spatial nanoconfinement effect for ultrasensitive X-ray detectors. The design of high-orientation nanofiber structures and dense interpenetrating polymer networks enhanced the electron-transporting efficiency and stability of the polymer semiconductors. The resultant polymer semiconductors exhibited an ultrahigh sensitivity of 1.52 × 104 µC Gyair-1 cm-2, an ultralow detection limit of 37.7 nGyair s-1 (comparable to the record-low value of perovskite single crystals), and polymer film X-ray imaging was achieved at a low dose rate of 3.65 µGyair s-1 (about 1/12 dose rate of the commercial medical chest X-ray diagnosis). Meanwhile, the hybrid semiconductor films could sustain 100% biaxial stretching strain with minimal degeneracy in photoelectrical performances. These results provide insights into future high-performance, low-cost e-skin photoelectronic detectors and imaging.
Asunto(s)
Polímeros , Semiconductores , Rayos X , Polímeros/química , Radiografía , PielRESUMEN
Alpinetin is the major active ingredient of Alpiniakatsumadai Hayata. As a kind of novel plant-derived flavonoid, alpinetin has shown potent hepatoprotective effect against many liver diseases such as non-alcoholic fatty liver and lipopolysaccharide/d-Galactosamine-induced liver injury. However, its roles in liver fibrosis remain to be determined. The aim of the current study was to investigate the effect of alpinetin in mice with carbon tetrachloride (CCl4)-induced liver fibrosis, and to elucidate the underlying mechanisms of action. Alpinetin ameliorated the CCl4-induced liver injury and fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker proteins. Alpinetin suppressed the inflammation and oxidative stress in fibrotic livers of mice, as evidenced by decreased levels of proinflammatory factors, the decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the increased activities of antioxidant enzymes. In addition, alpinetin attenuated the angiogenesis in fibrotic livers of the test animals. Mechanistically, alpinetin inhibited the CCl4-induced expression of NLRP3, ASC, cleaved caspase-1, mature (cleaved-) IL-1ß, and IL-18 in livers of mice. Furthermore, alpinetin resulted in an increased in the nuclear expression and a decrease in the cytoplasmic expression of Nrf2, as well as increased protein expression of downstream target enzymes, GCLC, HO-1, NQO1, and GCLM, thus exerting the antioxidant effect. Overall, these findings suggested that the anti-fibrotic effect of alpinetin can be attributed to the inhibition of NLRP3-mediated anti-inflammatory activities and Nrf2-mediated anti-oxidative activities, in addition to the decrement of hepatic angiogenesis.