Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
EMBO J ; 41(24): e111173, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36245295

RESUMEN

Exposure of mitochondrial DNA (mtDNA) to the cytosol activates innate immune responses. But the mechanisms by which mtDNA crosses the inner mitochondrial membrane are unknown. Here, we found that the inner mitochondrial membrane protein prohibitin 1 (PHB1) plays a critical role in mtDNA release by regulating permeability across the mitochondrial inner membrane. Loss of PHB1 results in alterations in mitochondrial integrity and function. PHB1-deficient macrophages, serum from myeloid-specific PHB1 KO (Phb1MyeKO) mice, and peripheral blood mononuclear cells from neonatal sepsis patients show increased interleukin-1ß (IL-1ß) levels. PHB1 KO mice are also intolerant of lipopolysaccharide shock. Phb1-depleted macrophages show increased cytoplasmic release of mtDNA and inflammatory responses. This process is suppressed by cyclosporine A and VBIT-4, which inhibit the mitochondrial permeability transition pore (mPTP) and VDAC oligomerization. Inflammatory stresses downregulate PHB1 expression levels in macrophages. Under normal physiological conditions, the inner mitochondrial membrane proteins, AFG3L2 and SPG7, are tethered to PHB1 to inhibit mPTP opening. Downregulation of PHB1 results in enhanced interaction between AFG3L2 and SPG7, mPTP opening, mtDNA release, and downstream inflammatory responses.


Asunto(s)
ADN Mitocondrial , Prohibitinas , Animales , Humanos , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ADN Mitocondrial/genética , Leucocitos Mononucleares/metabolismo , Metaloendopeptidasas/metabolismo , Prohibitinas/metabolismo , Proteínas Represoras/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial
2.
Mol Psychiatry ; 28(3): 1219-1231, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36604604

RESUMEN

ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Animales , Humanos , Ratones , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Endosomas/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
3.
Acta Pharmacol Sin ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198663

RESUMEN

The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.

4.
J Biol Chem ; 298(9): 102314, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926709

RESUMEN

The zinc finger ubiquitin ligase RNF6 has been proposed as a potential therapeutic target in several cancers, but understanding its molecular mechanism of degradation has been elusive. In the present study, we find that RNF6 is degraded via auto-ubiquitination in a manner dependent on its Really Interesting New Gene (RING) domain. We determine that when the RING domain is deleted (ΔRING) or the core cysteine residues in the zinc finger are mutated (C632S/C635S), the WT protein, but not the ΔRING or mutant RNF6 protein, undergoes polyubiquitination. We also identify USP7 as a deubiquitinase of RNF6 by tandem mass spectrometry. We show that USP7 interacts with RNF6 and abolishes its K48-linked polyubiquitination, thereby preventing its degradation. In contrast, we found a USP7-specific inhibitor promotes RNF6 polyubiquitination, degradation, and cell death. Furthermore, we demonstrate the anti-leukemic drug Nilotinib and anti-myeloma drug Panobinostat (LBH589) induce RNF6 K48-linked polyubiquitination and degradation in both multiple myeloma (MM) and leukemia cells. In agreement with our hypothesis on the mode of RNF6 degradation, we show these drugs promote RNF6 auto-ubiquitination in an in vitro ubiquitination system without other E3 ligases. Consistently, reexpression of RNF6 ablates drug-induced MM and leukemia cell apoptosis. Therefore, our results reveal that RNF6 is a RING E3 ligase that undergoes auto-ubiquitination, which could be abolished by USP7 and induced by anti-cancer drugs. We propose that chemical induction of RNF6 auto-ubiquitination and degradation could be a novel strategy for the treatment of hematological malignancies including MM and leukemia.


Asunto(s)
Antineoplásicos , Proteínas de Unión al ADN , Leucemia Mielógena Crónica BCR-ABL Positiva , Mieloma Múltiple , Panobinostat , Ubiquitina-Proteína Ligasas , Ubiquitinación , Dedos de Zinc , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mieloma Múltiple/tratamiento farmacológico , Panobinostat/farmacología , Panobinostat/uso terapéutico , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
5.
EMBO J ; 35(13): 1368-84, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27145933

RESUMEN

In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER-mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.


Asunto(s)
Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Hipoxia , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Células Cultivadas , Dinaminas , Humanos , Mitofagia , Unión Proteica
7.
Int J Mol Sci ; 17(4): 515, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27058536

RESUMEN

Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3) positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs). Cisatracurium lowered HUVEC viability to 0.16 (OD490) at 100 µM and to 0.05 (OD490) after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01). Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype) MEF (mouse embryonic fibroblast) (p < 0.01) but was unaffected in Atg5 KO (Knockout) MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Atracurio/análogos & derivados , Autofagia/efectos de los fármacos , Bloqueantes Neuromusculares/efectos adversos , Animales , Atracurio/efectos adversos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteolisis/efectos de los fármacos
8.
J Biol Chem ; 289(15): 10691-10701, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24573672

RESUMEN

Mitophagy receptors mediate the selective recognition and targeting of damaged mitochondria by autophagosomes. The mechanism for the regulation of these receptors remains unknown. Here, we demonstrated that a novel hypoxia-responsive microRNA, microRNA-137 (miR-137), markedly inhibits mitochondrial degradation by autophagy without affecting global autophagy. miR-137 targets the expression of two mitophagy receptors NIX and FUNDC1. Impaired mitophagy in response to hypoxia caused by miR-137 is reversed by re-expression of FUNDC1 and NIX expression vectors lacking the miR-137 recognition sites at their 3' UTR. Conversely, miR-137 also suppresses the mitophagy induced by fundc1 (CDS+3'UTR) but not fundc1 (CDS) overexpression. Finally, we found that miR-137 inhibits mitophagy by reducing the expression of the mitophagy receptor thereby leads to inadequate interaction between mitophagy receptor and LC3. Our results demonstrated the regulatory role of miRNA to mitophagy receptors and revealed a novel link between miR-137 and mitophagy.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones no Traducidas 3' , Animales , Hipoxia de la Célula , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fagosomas/metabolismo
9.
Autophagy ; : 1-3, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225184

RESUMEN

Mitochondria, the powerhouses of the cell, play pivotal roles in cellular processes ranging from energy production to innate immunity. Their unique double-membrane structure typically sequesters mitochondrial DNA (mtDNA) from the rest of the cell. However, under oxidative or immune stress, mtDNA can escape into the cytoplasm, posing a threat as a potential danger signal. The accumulation of cytoplasmic mtDNA can disrupt cellular immune balance and trigger cell death. Our research unveils a novel quality control mechanism, which we term "nucleoid-phagy", that safeguards cellular homeostasis by clearing mislocalized mtDNA. We demonstrate that TFAM, a key protein involved in mtDNA folding and wrapping, accompanies mtDNA into the cytoplasm under stress conditions. Remarkably, TFAM acts as an autophagy receptor, interacting with LC3B to facilitate the autophagic clearance of cytoplasmic mtDNA, thereby preventing the activation of the pro-inflammatory CGAS-STING1 pathway. This study provides unprecedented insights into cytoplasmic mtDNA quality control and offers new perspectives on mitigating inflammatory responses in mitochondrial-related diseases.

10.
Nat Cell Biol ; 26(6): 878-891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783142

RESUMEN

When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.


Asunto(s)
Autofagia , ADN Mitocondrial , Proteínas de Unión al ADN , Inflamación , Mitocondrias , Proteínas Mitocondriales , Factores de Transcripción , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Animales , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Citoplasma/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Células HEK293 , Ratones Endogámicos C57BL , Proteínas del Grupo de Alta Movilidad
12.
Contact (Thousand Oaks) ; 5: 25152564221092487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37366511

RESUMEN

A recent research paper published in Journal of Cell Biology by Chen and colleagues describes a novel mechanism by which the MAM (Mitochondrial-associated endoplasmic reticulum membrane) protein FUNDC1 (FUN14 domain-containing protein 1) regulates mitochondrial division through altered protein post-translational modifications under hypoxic stress. The authors found that in a hypoxic environment, the endoplasmic reticulum-localized deubiquitinating enzyme USP19 accumulates at the MAM and interacts with the enriched mitochondrial outer membrane protein FUNDC1, which subsequently induces its deubiquitination and promotes the oligomerization and activity of DRP1, and mitochondria eventually divide in the presence of DRP1. This article provides new insights into the regulation of mitochondrial dynamics by FUNDC1 under hypoxic condition.

13.
Theranostics ; 11(2): 974-995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391516

RESUMEN

Membrane contact sites (MCSs) are defined as regions where two organelles are closely apposed, and most MCSs associated with each other via protein-protein or protein-lipid interactions. A number of key molecular machinery systems participate in mediating substance exchange and signal transduction, both of which are essential processes in terms of cellular physiology and pathophysiology. The endoplasmic reticulum (ER) is the largest reticulum network within the cell and has extensive communication with other cellular organelles, including the plasma membrane (PM), mitochondria, Golgi, endosomes and lipid droplets (LDs). The contacts and reactions between them are largely mediated by various protein tethers and lipids. Ions, lipids and even proteins can be transported between the ER and neighboring organelles or recruited to the contact site to exert their functions. This review focuses on the key molecules involved in the formation of different contact sites as well as their biological functions.


Asunto(s)
Membrana Celular/metabolismo , Fenómenos Fisiológicos Celulares , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Transporte Biológico , Humanos , Metabolismo de los Lípidos
14.
Autophagy ; 17(5): 1142-1156, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32249716

RESUMEN

Energy deprivation activates the cellular energy sensor AMP-activated protein kinase (AMPK), which in turn induces macroautophagy/autophagy. The mitochondrial-associated ER membrane (MAM) plays a key role in mitochondrial division and autophagy, and the mitochondrial fusion protein MFN2 (mitofusin 2) tethers the MAM, but the mechanism by which AMPK and MFN2 regulate autophagy in response to energy stress remains unclear. Here, we found that energy stress not only triggers mitochondrial fission and autophagy, but more importantly increases the number of MAMs, a process that requires AMPK. Interestingly, under energy stress, considerable amounts of AMPK translocate from cytosol to the MAM and the mitochondrion as mitochondrial fission occurs. Unexpectedly, AMPK interacts directly with MFN2. The autophagic ability of mouse embryonic fibroblasts (MEFs) lacking MFN2 (mfn2-/-) is significantly attenuated in response to energy stress as compared to wild-type MEFs (WT MEFs), while re-expression of MFN2 in mfn2-/- cells rescues the autophagy defects of these cells. The abundance of MAMs is also greatly reduced in MFN2-deficient cells. Functional experiments show that the oxygen consumption rate and the glycolytic function of cells lacking MFN2 but not MFN1 are obviously attenuated, and MFN2 is important for cell survival under energy stress. In conclusion, our study establishes the molecular link between the energy sensor AMPK and the MAM tether MFN2, and reveals the important role of AMPK and MFN2 in energy stress-induced autophagy and MAM dynamics.Abbreviations: ACTB, actin beta; AMPK, AMP-activated protein kinase; BECN1, beclin 1; CANX, calnexin; ER, endoplasmic reticulum; HRP, horseradish peroxidase; EM, electron microscopy; FL, full-length; KD, kinase dead, KO, knockout; MAb, monoclonal antibody; MAMs, mitochondria-associated membranes; MAP1LC3/LC3B, microtubule associated protein 1 light chain 3; MFN2, mitofusin 2; OPA1, OPA1 mitochondrial dynamin like GTPase; PAb, polyclonal antibody; PtdIns3K, class III phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol 3-phosphate; SD, standard deviation; TEM, transmission electron microscopy; TOMM20, translocase of outer mitochondrial membrane 20; ULK1, unc-51 like autophagy activating kinase 1; MEF, mouse embryonic fibroblast; WT, wildtype.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo , Mitofagia/fisiología , Autofagosomas/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
15.
Front Cell Dev Biol ; 8: 692, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903766

RESUMEN

The mitochondrion, the ATP-producing center, is both physically and functionally associated with almost all other organelles in the cell. Mitochondrial-associated membranes (MAMs) are involved in a variety of biological processes, such as lipid exchange, protein transport, mitochondrial fission, mitophagy, and inflammation. Several inflammation-related diseases in the cardiovascular system involve several intracellular events including mitochondrial dysfunction as well as disruption of MAMs. Therefore, an in-depth exploration of the function of MAMs will be of great significance for us to understand the initiation, progression, and clinical complications of cardiovascular disease (CVD). In this review, we summarize the recent advances in our knowledge of MAM regulation and function in CVD-related cells. We discuss the potential roles of MAMs in activating inflammation to influence the development of CVD.

16.
Front Physiol ; 11: 252, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292354

RESUMEN

Mitochondria serve as an energy plant and participate in a variety of signaling pathways to regulate cellular metabolism, survival and immunity. Mitochondrial dysfunction, in particular in cardiomyocytes, is associated with the development and progression of cardiovascular disease, resulting in heart failure, cardiomyopathy, and cardiac ischemia/reperfusion injury. Therefore, mitochondrial quality control processes, including post-translational modifications of mitochondrial proteins, mitochondrial dynamics, mitophagy, and formation of mitochondrial-driven vesicles, play a critical role in maintenance of mitochondrial and even cellular homeostasis in physiological or pathological conditions. Accumulating evidence suggests that mitochondrial quality control in cardiomyocytes is able to improve cardiac function, rescue dying cardiomyocytes, and prevent the deterioration of cardiovascular disease upon external environmental stress. In this review, we discuss recent progress in understanding mitochondrial quality control in cardiomyocytes. We also evaluate potential targets to prevent or treat cardiovascular diseases, and highlight future research directions which will help uncover additional mechanisms underlying mitochondrial homeostasis in cardiomyocytes.

17.
Cell Stress ; 3(5): 141-161, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31225510

RESUMEN

Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.

18.
FEBS Lett ; 590(6): 726-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26910393

RESUMEN

The functions of some essential autophagy genes are regulated by microRNAs. However, an ATG3-modulating microRNA has never been reported. Here we show that the transcription of miR-495 negatively correlates with the translation of ATG3 under nutrient-deprived or rapamycin-treated conditions. miR-495 targets ATG3 and regulates its protein levels under starvation conditions. miR-495 also inhibits starvation-induced autophagy by decreasing the number of autophagosomes and by preventing LC3-I-to-LC3-II transition and P62 degradation. These processes are reversed by the overexpression of an endogenous miR-495 inhibitor. Re-expression of Atg3 without miR-495 response elements restores miR-495-inhibited autophagy. miR-495 sustains cell viability under starvation conditions but has no effect under hypoxia. Moreover, miR-495 inhibits etoposide-induced cell death. In conclusion, miR-495 is involved in starvation-induced autophagy by regulating Atg3.


Asunto(s)
Autofagia/genética , MicroARNs/genética , Enzimas Ubiquitina-Conjugadoras/genética , Regiones no Traducidas 3' , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia , Células CHO , Supervivencia Celular , Células Cultivadas , Cricetulus , Medios de Cultivo , Etopósido/farmacología , Regulación de la Expresión Génica , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Fagosomas/metabolismo , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/metabolismo
19.
FEBS Lett ; 589(15): 1847-54, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25980607

RESUMEN

UNC-51 like kinase (ULK1) translocates to dysfunctional mitochondria and is involved in mitophagy, but the mechanisms responsible for ULK1 activation and translocation remain unclear. Here, we found that hypoxia induces phosphorylation of ULK1 at Serine-555 by Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). Unlike wild-type ULK1, an ULK1 (S555A) mutant cannot translocate to mitochondria in response to hypoxia. Inhibition or knockdown of AMPK prevents ULK1 translocation and inhibits mitophagy. Finally, the phospho-mimic ULK1 (S555D) mutant, but not ULK1 (S555A), rescues mitophagy in AMPK-knockdown cells. Thus, we conclude that AMPK-dependent phosphorylation of ULK1 is critical for translocation of ULK1 to mitochondria and for mitophagy in response to hypoxic stress.


Asunto(s)
Adenilato Quinasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Mitofagia , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Células Cultivadas , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Mitocondrias/enzimología , Fosforilación , Transporte de Proteínas
20.
Oxid Med Cell Longev ; 2013: 378484, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24454982

RESUMEN

Recent studies indicate that propofol may protect cells via suppressing autophagic cell death caused by excessive reactive oxygen species induced by hypoxia reoxygenation (H/R). It is established that gene expression patterns including autophagy-related genes changed significantly during the process of H/R in the presence or absence of propofol posthypoxia treatment (P-PostH). The reasons for such differences, however, remain largely unknown. MicroRNAs provide a novel mechanism for gene regulation. In the present study, we systematically analyzed the alterations in microRNA expression using human umbilical vein endothelial cells (HUVECs) subjected to H/R in the presence or absence of posthypoxic propofol treatment. Genome-wide profiling of microRNAs was then conducted using microRNA microarray. Fourteen miRNAs are differentially expressed and six of them were validated by the quantitative real-time PCR (Q-PCR) of which three were substantially increased, whereas one was decreased. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, predicted targets of ten miRNAs were analyzed using the Gene Ontology (GO) analysis to build signaling networks. Interestingly, six of the identified microRNAs are known to target autophagy-related genes. In conclusion, our results revealed that different miRNA expression patterns are induced by propofol posthypoxia treatment in H/R and the alterations in miRNA expression patterns are implicated in regulating distinctive autophagy-related gene expression.


Asunto(s)
Autofagia/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Modelos Biológicos , Oxígeno/farmacología , Propofol/farmacología , Transducción de Señal/genética , Autofagia/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA