Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(10): e2302943, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319020

RESUMEN

Herein, an integrated solar-thermal-power protocol is presented at a micro-nanoscopic level to maximize the energy utilization efficiency involving utilization period and utilization patterns, and the nexus of freshwater production and nanogeneration is realized. This sophisticated vaporization device is constructed with the merits of thermally confined evaporation space in favor of recycling latent heat of condensation and optimizing light absorption based on the local sunlight angle of incidence. Inspired by a bird's nest, Sb2 WO6 /D-Fructose composites are prepared as photothermal absorbers to achieve a superior water evaporation rate of 2.78 kg m-2  h-1 in the Multi-stage evaporator. In addition, a synergistic tandem photo thermal-electric device with a combination of solar-driven water evaporation and further waterflow-driven hydrovoltaic generation, which can output a stable voltage of up to 360.8 mV with effective utilization of steam energy and a limited water source, is exploited. Such integrated configurations pave a pathway for clean water production and renewable power generation simultaneously toward energy issues.

2.
ACS Appl Mater Interfaces ; 16(8): 10285-10294, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38377590

RESUMEN

The novel freshwater production technology, such as interface solar-steam conversion (ISSC) technology, has advanced so rapidly recently, where its energy capture and conversion process was localized at the air-water interface so as to achieve high efficiency of energy utilization and transformation. However, when enlarging the evaporation surface and application scale, the inevitably increased heat loss and reduced conversion efficiency put it in a dilemma: should we exploit innovative steamer constructs for practical applications. In order to effectively mitigate heat loss from the evaporator to the surrounding environment, a series of spatial pattern evaporators (SPEs) are specifically designed in this article. By recovering the energy of radiation and convection heat loss, SPEs achieved low heat loss in an open evaporator through unequal height auxiliary heat exchange platforms. In an open environment, it achieves a maximum evaporation rate of 1.68 kg m-2 h-1, with approximately 52.41% of the heat loss being reabsorbed. This sophisticated pattern design provides a promising guideline for optimizing thermal management strategies and promoting practically scalable applications.

3.
Materials (Basel) ; 15(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057157

RESUMEN

The plastic behavior in the large deflection response of slender sandwich beams with fiber metal laminate (FML) face sheets and a metal foam core under transverse loading is studied. According to a modified rigid-perfectly plastic material approximation, an analytical model is developed, and simple formulae are obtained for the large deflection response of fully clamped FML sandwich beams, considering the interaction of bending and stretching. Finite element (FE) calculations are conducted, and analytical predictions capture numerical results reasonably in the plastic stage of large deflection. The influences of metal volume fraction, strength ratio of metal to composite layer, core strength, and punch size on the plastic behavior in the large deflection response of FML sandwich beams are discussed. It is suggested that, if the structural behavior of fiber-metal laminate sandwich beams is plasticity dominated, it is similar to that of metal sandwich beams. Moreover, both metal volume fraction and the strength ratio of metal to composite layer are found to be important for the plastic behavior in the large deflection response of fiber metal laminate sandwich beams, while core strength and punch size might have little influence on it.

4.
ACS Appl Mater Interfaces ; 13(36): 43063-43074, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473488

RESUMEN

To develop next-generation electronic devices, novel semiconductive materials are urgently required. The transition metal dichalcogenides (TMDs) hold the promise of next generation of semiconductor materials for emerging electronic applications. As a member of the group-10 TMDs, PdS2 has a notable layer-number-dependent band structure and tremendously high carrier mobility at room temperature. Here, we demonstrate the experimental realization of centimeter-scale synthesis of the few-layer PdS2 by the combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods. For the first time, the optical anisotropic properties of the few-layer PdS2 were investigated through angle-resolved polarized Raman spectroscopy. Also, the evolution of Raman spectra was studied depending on the temperature in the range of 12-300 K. To further understand the electronic properties of the few-layer PdS2, the field-effect transistor (FET) devices were fabricated and investigated. The electronic measurements of such FET devices reveal that the PdS2 materials exhibit a tunable ambipolar transport mechanism with field-effect mobility of up to ∼388 cm2 V-1 s-1 and the on/off ratio of ∼800, which were not reported before in the literature. To well understand the experimental results, the electronic structure of PdS2 was determined using density functional theory (DFT) calculations. These excellent physical properties are very helpful in developing high-performance opto-electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA