Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Radiol ; 32(2): 1353-1361, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34347157

RESUMEN

PURPOSE: Our purposes were (1) to explore the methodologic quality of the studies on the deep learning in knee imaging with CLAIM criterion and (2) to offer our vision for the development of CLAIM to assure high-quality reports about the application of AI to medical imaging in knee joint. MATERIALS AND METHODS: A Checklist for Artificial Intelligence in Medical Imaging systematic review was conducted from January 1, 2015, to June 1, 2020, using PubMed, EMBASE, and Web of Science databases. A total of 36 articles discussing deep learning applications in knee joint imaging were identified, divided by imaging modality, and characterized by imaging task, data source, algorithm type, and outcome metrics. RESULTS: A total of 36 studies were identified and divided into: X-ray (44.44%) and MRI (55.56%). The mean CLAIM score of the 36 studies was 27.94 (standard deviation, 4.26), which was 66.53% of the ideal score of 42.00. The CLAIM items achieved an average good inter-rater agreement (ICC 0.815, 95% CI 0.660-0.902). In total, 32 studies performed internal cross-validation on the data set, while only 4 studies conducted external validation of the data set. CONCLUSIONS: The overall scientific quality of deep learning in knee imaging is insufficient; however, deep learning remains a promising technology for diagnostic or predictive purpose. Improvements in study design, validation, and open science need to be made to demonstrate the generalizability of findings and to achieve clinical applications. Widespread application, pre-trained scoring procedure, and modification of CLAIM in response to clinical needs are necessary in the future. KEY POINTS: • Limited deep learning studies were established in knee imaging with mean score of 27.94, which was 66.53% of the ideal score of 42.00, commonly due to invalidated results, retrospective study design, and absence of a clear definition of the CLAIM items in detail. • A previous trained data extraction instrument allowed reaching moderate inter-rater agreement in the application of the CLAIM, while CLAIM still needs improvement in scoring items and result reporting to become a wide adaptive tool in reviews of deep learning studies.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Lista de Verificación , Humanos , Articulación de la Rodilla , Radiografía , Estudios Retrospectivos
2.
IEEE Trans Med Imaging ; 43(7): 2537-2546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376975

RESUMEN

Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a pre-defined atlas. However, utilizing the brain atlas poses several challenges including 1) subjective selection bias in choosing from various brain atlases, 2) parcellation of each subject's brain with the same atlas yet disregarding individual specificity; 3) lack of interaction between brain region parcellation and downstream ROI-based FC analysis. To address these limitations, we propose a novel randomizing strategy for generating brain function representation to facilitate neural disease diagnosis. Specifically, we randomly sample brain patches, thus avoiding ROI parcellations of the brain atlas. Then, we introduce a new brain function representation framework for the sampled patches. Each patch has its function description by referring to anchor patches, as well as the position description. Furthermore, we design an adaptive-selection-assisted Transformer network to optimize and integrate the function representations of all sampled patches within each brain for neural disease diagnosis. To validate our framework, we conduct extensive evaluations on three datasets, and the experimental results establish the effectiveness and generality of our proposed method, offering a promising avenue for advancing neural disease diagnosis beyond the confines of traditional atlas-based methods. Our code is available at https://github.com/mjliu2020/RandomFR.


Asunto(s)
Encefalopatías , Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encefalopatías/diagnóstico por imagen , Encefalopatías/fisiopatología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
3.
IEEE Trans Med Imaging ; PP2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717880

RESUMEN

The integration of Computer-Aided Diagnosis (CAD) with Large Language Models (LLMs) presents a promising frontier in clinical applications, notably in automating diagnostic processes akin to those performed by radiologists and providing consultations similar to a virtual family doctor. Despite the promising potential of this integration, current works face at least two limitations: (1) From the perspective of a radiologist, existing studies typically have a restricted scope of applicable imaging domains, failing to meet the diagnostic needs of different patients. Also, the insufficient diagnostic capability of LLMs further undermine the quality and reliability of the generated medical reports. (2) Current LLMs lack the requisite depth in medical expertise, rendering them less effective as virtual family doctors due to the potential unreliability of the advice provided during patient consultations. To address these limitations, we introduce ChatCAD+, to be universal and reliable. Specifically, it is featured by two main modules: (1) Reliable Report Generation and (2) Reliable Interaction. The Reliable Report Generation module is capable of interpreting medical images from diverse domains and generate high-quality medical reports via our proposed hierarchical in-context learning. Concurrently, the interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice. Together, these designed modules synergize to closely align with the expertise of human medical professionals, offering enhanced consistency and reliability for interpretation and advice. The source code is available at GitHub.

4.
Med Image Anal ; 94: 103158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569379

RESUMEN

Magnetic resonance (MR) images collected in 2D clinical protocols typically have large inter-slice spacing, resulting in high in-plane resolution and reduced through-plane resolution. Super-resolution technique can enhance the through-plane resolution of MR images to facilitate downstream visualization and computer-aided diagnosis. However, most existing works train the super-resolution network at a fixed scaling factor, which is not friendly to clinical scenes of varying inter-slice spacing in MR scanning. Inspired by the recent progress in implicit neural representation, we propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing. The SA-INR aims to represent an MR image as a continuous implicit function of 3D coordinates. In this way, the SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space. In particular, a local-aware spatial attention operation is introduced to model nearby voxels and their affinity more accurately in a larger receptive field. Meanwhile, to improve the computational efficiency, a gradient-guided gating mask is proposed for applying the local-aware spatial attention to selected areas only. We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.


Asunto(s)
Diagnóstico por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Articulación de la Rodilla , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
5.
IEEE Trans Med Imaging ; 42(2): 368-379, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36094985

RESUMEN

Knee osteoarthritis (OA) is the most common osteoarthritis and a leading cause of disability. Cartilage defects are regarded as major manifestations of knee OA, which are visible by magnetic resonance imaging (MRI). Thus early detection and assessment for knee cartilage defects are important for protecting patients from knee OA. In this way, many attempts have been made on knee cartilage defect assessment by applying convolutional neural networks (CNNs) to knee MRI. However, the physiologic characteristics of the cartilage may hinder such efforts: the cartilage is a thin curved layer, implying that only a small portion of voxels in knee MRI can contribute to the cartilage defect assessment; heterogeneous scanning protocols further challenge the feasibility of the CNNs in clinical practice; the CNN-based knee cartilage evaluation results lack interpretability. To address these challenges, we model the cartilages structure and appearance from knee MRI into a graph representation, which is capable of handling highly diverse clinical data. Then, guided by the cartilage graph representation, we design a non-Euclidean deep learning network with the self-attention mechanism, to extract cartilage features in the local and global, and to derive the final assessment with a visualized result. Our comprehensive experiments show that the proposed method yields superior performance in knee cartilage defect assessment, plus its convenient 3D visualization for interpretability.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Articulación de la Rodilla/diagnóstico por imagen , Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA