Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(46): 22959-22965, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659026

RESUMEN

Jumping spiders (Salticidae) rely on accurate depth perception for predation and navigation. They accomplish depth perception, despite their tiny brains, by using specialized optics. Each principal eye includes a multitiered retina that simultaneously receives multiple images with different amounts of defocus, and from these images, distance is decoded with relatively little computation. We introduce a compact depth sensor that is inspired by the jumping spider. It combines metalens optics, which modifies the phase of incident light at a subwavelength scale, with efficient computations to measure depth from image defocus. Instead of using a multitiered retina to transduce multiple simultaneous images, the sensor uses a metalens to split the light that passes through an aperture and concurrently form 2 differently defocused images at distinct regions of a single planar photosensor. We demonstrate a system that deploys a 3-mm-diameter metalens to measure depth over a 10-cm distance range, using fewer than 700 floating point operations per output pixel. Compared with previous passive depth sensors, our metalens depth sensor is compact, single-shot, and requires a small amount of computation. This integration of nanophotonics and efficient computation brings artificial depth sensing closer to being feasible on millimeter-scale, microwatts platforms such as microrobots and microsensor networks.


Asunto(s)
Cristalino/química , Óptica y Fotónica/instrumentación , Arañas/fisiología , Animales , Percepción de Profundidad , Diseño de Equipo , Ojo/química , Metales/química , Visión Ocular
2.
J Vis ; 14(3): 17, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24627457

RESUMEN

Translucency is an important aspect of material appearance. To some extent, humans are able to estimate translucency in a consistent way across different shapes and lighting conditions, i.e., to exhibit translucency constancy. However, Fleming and Bülthoff (2005) have shown that that there can be large failures of constancy, with lighting direction playing an important role. In this paper, we explore the interaction of shape, illumination, and degree of translucency constancy more deeply by including in our analysis the variations in translucent appearance that are induced by the shape of the scattering phase function. This is an aspect of translucency that has been largely neglected. We used appearance matching to measure how perceived translucency depends on both lighting and phase function. The stimuli were rendered scenes that contained a figurine and the lighting direction was represented by spherical harmonic basis function. Observers adjusted the density of a figurine under one lighting condition to match the material property of a target figurine under another lighting condition. Across the trials, we varied both the lighting direction and the phase function of the target. The phase functions were sampled from a 2D space proposed by Gkioulekas et al. (2013) to span an important range of translucent appearance. We find the degree of translucency constancy depends strongly on the phase function's location in the same 2D space, suggesting that the space captures useful information about different types of translucency. We also find that the geometry of an object is important. We compare the case of a torus, which has a simple smooth shape, with that of the figurine, which has more complex geometric features. The complex shape shows a greater range of apparent translucencies and a higher degree of constancy failure. In summary, humans show significant failures of translucency constancy across changes in lighting direction, but the effect depends both on the shape complexity and the translucency phase function.


Asunto(s)
Percepción de Color/fisiología , Percepción de Forma/fisiología , Iluminación , Adulto , Femenino , Humanos , Imagenología Tridimensional , Masculino
3.
Artículo en Inglés | MEDLINE | ID: mdl-38289850

RESUMEN

Neural Radiance Fields (NeRF) is a popular view synthesis technique that represents a scene as a continuous volumetric function, parameterized by multilayer perceptrons that provide the volume density and view-dependent emitted radiance at each location. While NeRF-based techniques excel at representing fine geometric structures with smoothly varying view-dependent appearance, they often fail to accurately capture and reproduce the appearance of glossy surfaces. We address this limitation by introducing Ref-NeRF, which replaces NeRF's parameterization of view-dependent outgoing radiance with a representation of reflected radiance and structures this function using a collection of spatially-varying scene properties. We show that together with a regularizer on normal vectors, our model significantly improves the realism and accuracy of specular reflections. Furthermore, we show that our model's internal representation of outgoing radiance is interpretable and useful for scene editing.

4.
IEEE Trans Pattern Anal Mach Intell ; 43(12): 4519-4522, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34003744

RESUMEN

We present a sufficient condition for recovering unique texture and viewpoints from unknown orthographic projections of a flat texture process. We show that four observations are sufficient in general, and we characterize the ambiguous cases. The results are applicable to shape from texture and texture-based structure from motion.

5.
Med Image Anal ; 11(5): 458-64, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17681483

RESUMEN

Real-time three-dimensional ultrasound enables new intracardiac surgical procedures, but the distorted appearance of instruments in ultrasound poses a challenge to surgeons. This paper presents a detection technique that identifies the position of the instrument within the ultrasound volume. The algorithm uses a form of the generalized Radon transform to search for long straight objects in the ultrasound image, a feature characteristic of instruments and not found in cardiac tissue. When combined with passive markers placed on the instrument shaft, the full position and orientation of the instrument is found in 3D space. This detection technique is amenable to rapid execution on the current generation of personal computer graphics processor units (GPU). Our GPU implementation detected a surgical instrument in 31 ms, sufficient for real-time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank experiment found instrument orientation errors of 1.1 degrees and tip position errors of less than 1.8mm. Finally, an in vivo study demonstrated successful instrument tracking inside a beating porcine heart.


Asunto(s)
Procedimientos Quirúrgicos Cardiovasculares/instrumentación , Ecocardiografía Tridimensional/instrumentación , Ecocardiografía Tridimensional/métodos , Procesamiento de Señales Asistido por Computador/instrumentación , Cirugía Asistida por Computador/métodos , Ultrasonografía Intervencional/métodos , Animales , Procedimientos Quirúrgicos Cardiovasculares/métodos , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Cirugía Asistida por Computador/instrumentación , Instrumentos Quirúrgicos , Porcinos , Ultrasonografía Intervencional/instrumentación
6.
IEEE Trans Image Process ; 26(11): 5107-5121, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28742038

RESUMEN

Many patch-based image denoising algorithms can be formulated as applying a smoothing filter to the noisy image. Expressed as matrices, the smoothing filters must be row normalized, so that each row sums to unity. Surprisingly, if we apply a column normalization before the row normalization, the performance of the smoothing filter can often be significantly improved. Prior works showed that such performance gain is related to the Sinkhorn-Knopp balancing algorithm, an iterative procedure that symmetrizes a row-stochastic matrix to a doubly stochastic matrix. However, a complete understanding of the performance gain phenomenon is still lacking. In this paper, we study the performance gain phenomenon from a statistical learning perspective. We show that Sinkhorn-Knopp is equivalent to an expectation-maximization (EM) algorithm of learning a Gaussian mixture model of the image patches. By establishing the correspondence between the steps of Sinkhorn-Knopp and the EM algorithm, we provide a geometrical interpretation of the symmetrization process. This observation allows us to develop a new denoising algorithm called Gaussian mixture model symmetric smoothing filter (GSF). GSF is an extension of the Sinkhorn-Knopp and is a generalization of the original smoothing filters. Despite its simple formulation, GSF outperforms many existing smoothing filters and has a similar performance compared with several state-of-the-art denoising algorithms.

7.
IEEE Trans Pattern Anal Mach Intell ; 28(8): 1287-302, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16886864

RESUMEN

Three-dimensional appearance models consisting of spatially varying reflectance functions defined on a known shape can be used in analysis-by-synthesis approaches to a number of visual tasks. The construction of these models requires the measurement of reflectance, and the problem of recovering spatially varying reflectance from images of known shape has drawn considerable interest. To date, existing methods rely on either: (1) low-dimensional (e.g., parametric) reflectance models, or (2) large data sets involving thousands of images (or more) per object. Appearance models based on the former have limited accuracy and generality since they require the selection of a specific reflectance model a priori, and while approaches based on the latter may be suitable for certain applications, they are generally too costly and cumbersome to be used for image analysis. We present an alternative approach that seeks to combine the benefits of existing methods by enabling the estimation of a nonparametric spatially varying reflectance function from a small number of images. We frame the problem as scattered-data interpolation in a mixed spatial and angular domain, and we present a theory demonstrating that the angular accuracy of a recovered reflectance function can be increased in exchange for a decrease in its spatial resolution. We also present a practical solution to this interpolation problem using a new representation of reflectance based on radial basis functions. This representation is evaluated experimentally by testing its ability to predict appearance under novel view and lighting conditions. Our results suggest that since reflectance typically varies slowly from point to point over much of an object's surface, we can often obtain a nonparametric reflectance function from a sparse set of images. In fact, in some cases, we can obtain reasonable results in the limiting case of only a single input image.


Asunto(s)
Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Iluminación/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fotometría/métodos , Algoritmos , Almacenamiento y Recuperación de la Información/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
8.
IEEE Trans Pattern Anal Mach Intell ; 37(1): 67-79, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26353209

RESUMEN

We develop a framework for extracting a concise representation of the shape information available from diffuse shading in a small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of noise, has guarantees on recovering accurate local shape and lighting. And when noise is present, the inferred local shape distributions provide useful shape information without over-committing to any particular image explanation. These local shape distributions naturally encode the fact that some smooth diffuse regions are more informative than others, and they enable efficient and robust reconstruction of object-scale shape. Experimental results show that this approach to surface reconstruction compares well against the state-of-art on both synthetic images and captured photographs.

9.
IEEE Trans Image Process ; 23(8): 3711-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122743

RESUMEN

We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Estadísticos , Simulación por Computador , Método de Montecarlo , Análisis Numérico Asistido por Computador , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
10.
IEEE Trans Pattern Anal Mach Intell ; 36(11): 2185-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26353060

RESUMEN

To produce images that are suitable for display, tone-mapping is widely used in digital cameras to map linear color measurements into narrow gamuts with limited dynamic range. This introduces non-linear distortion that must be undone, through a radiometric calibration process, before computer vision systems can analyze such photographs radiometrically. This paper considers the inherent uncertainty of undoing the effects of tone-mapping. We observe that this uncertainty varies substantially across color space, making some pixels more reliable than others. We introduce a model for this uncertainty and a method for fitting it to a given camera or imaging pipeline. Once fit, the model provides for each pixel in a tone-mapped digital photograph a probability distribution over linear scene colors that could have induced it. We demonstrate how these distributions can be useful for visual inference by incorporating them into estimation algorithms for a representative set of vision tasks.

11.
IEEE Trans Pattern Anal Mach Intell ; 35(12): 2982-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24136435

RESUMEN

Achieving computer vision on microscale devices is a challenge. On these platforms, the power and mass constraints are severe enough for even the most common computations (matrix manipulations, convolution, etc.) to be difficult. This paper proposes and analyzes a class of miniature vision sensors that can help overcome these constraints. These sensors reduce power requirements through template-based optical convolution, and they enable a wide field-of-view within a small form through a refractive optical design. We describe the tradeoffs between the field-of-view, volume, and mass of these sensors and we provide analytic tools to navigate the design space. We demonstrate milliscale prototypes for computer vision tasks such as locating edges, tracking targets, and detecting faces. Finally, we utilize photolithographic fabrication tools to further miniaturize the optical designs and demonstrate fiducial detection onboard a small autonomous air vehicle.

12.
IEEE Trans Pattern Anal Mach Intell ; 34(8): 1509-19, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22745000

RESUMEN

We introduce an efficient maximum likelihood approach for one part of the color constancy problem: removing from an image the color cast caused by the spectral distribution of the dominating scene illuminant. We do this by developing a statistical model for the spatial distribution of colors in white balanced images (i.e., those that have no color cast), and then using this model to infer illumination parameters as those being most likely under our model. The key observation is that by applying spatial band-pass filters to color images one unveils color distributions that are unimodal, symmetric, and well represented by a simple parametric form. Once these distributions are fit to training data, they enable efficient maximum likelihood estimation of the dominant illuminant in a new image, and they can be combined with statistical prior information about the illuminant in a very natural manner. Experimental evaluation on standard data sets suggests that the approach performs well.

13.
IEEE Trans Pattern Anal Mach Intell ; 33(12): 2506-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21339528

RESUMEN

Different materials reflect light in different ways, and this reflectance interacts with shape, lighting, and viewpoint to determine an object's image. Common materials exhibit diverse reflectance effects, and this is a significant source of difficulty for image analysis. One strategy for dealing with this diversity is to build computational tools that exploit reflectance symmetries, such as reciprocity and isotropy, that are exhibited by broad classes of materials. By building tools that exploit these symmetries, one can create vision systems that are more likely to succeed in real-world, non-Lambertian environments. In this paper, we develop a framework for representing and exploiting reflectance symmetries. We analyze the conditions for distinct surface points to have local view and lighting conditions that are equivalent under these symmetries, and we represent these conditions in terms of the geometric structure they induce on the Gaussian sphere and its abstraction, the projective plane. We also study the behavior of these structures under perturbations of surface shape and explore applications to both calibrated and uncalibrated photometric stereo.

14.
IEEE Trans Pattern Anal Mach Intell ; 32(11): 2054-70, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20847393

RESUMEN

An image of a specular (mirror-like) object is nothing but a distorted reflection of its environment. When the environment is unknown, reconstructing shape from such an image can be very difficult. This reconstruction task can be made tractable when, instead of a single image, one observes relative motion between the specular object and its environment, and therefore, a motion field-or specular flow-in the image plane. In this paper, we study the shape from specular flow problem and show that observable specular flow is directly related to surface shape through a nonlinear partial differential equation. This equation has the key property of depending only on the relative motion of the environment while being independent of its content. We take first steps toward understanding and exploiting this PDE, and we examine its qualitative properties in relation to shape geometry. We analyze several cases in which the surface shape can be recovered in closed form, and we show that, under certain conditions, specular shape can be reconstructed when both the relative motion and the content of the environment are unknown. We discuss numerical issues related to the proposed reconstruction algorithms, and we validate our findings using both real and synthetic data.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Simulación por Computador , Humanos , Aumento de la Imagen/métodos , Movimiento (Física) , Distribución Normal
15.
Artículo en Inglés | MEDLINE | ID: mdl-18982694

RESUMEN

We present a modular framework for mechanically regularized nonrigid image registration of 3D ultrasound and for identification of tissue mechanical parameters. Mechanically regularized deformation fields are computed from sparsely estimated local displacements. We enforce image-based local motion estimates by applying concentrated forces at mesh nodes of a mechanical finite-element model. The concentrated forces are generated by the elongation of regularization springs connected to the mesh nodes as their free ends are displaced according to local motion estimates. The regularization energy corresponding to the potential energy stored in the springs is minimized when the mechanical response of the model matches the observed response of the organ. We demonstrate that this technique is suitable for identification of material parameters of a nonlinear viscoelastic liver model and demonstrate its benefits over traditional indentation methods in terms of improved volumetric agreement between the model response and the experiment.


Asunto(s)
Algoritmos , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Hígado/fisiología , Modelos Biológicos , Técnica de Sustracción , Animales , Simulación por Computador , Elasticidad , Aumento de la Imagen/métodos , Técnicas In Vitro , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estrés Mecánico , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA