Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 12(8): 621-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27322068

RESUMEN

DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg(2+) bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.


Asunto(s)
Metales/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biochem J ; 473(2): 157-66, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26537753

RESUMEN

The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/biosíntesis , Tiamina Pirofosfato/biosíntesis , Animales , Catálisis , Ratones
3.
Biochem J ; 466(1): 137-45, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25431972

RESUMEN

Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multi-step pathway. The early intermediates of this pathway are notoriously reactive and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. In the present paper, we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA respectively). We present cheminformatic, biochemical, genetic and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multi-enzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , N-Glicosil Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Riboflavina/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Reacción de Maillard , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Biochem J ; 463(2): 279-86, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25046177

RESUMEN

Homocysteine S-methyltransferases (HMTs) are widely distributed enzymes that convert homocysteine (Hcy) into methionine (Met) using either S-adenosylmethionine (AdoMet) or the plant secondary product S-methylmethionine (SMM) as methyl donor. AdoMet is chirally and covalently unstable, with racemization of natural (S,S)-AdoMet yielding biologically inactive (R,S)-AdoMet and depurination yielding S-ribosylmethionine (S-ribosylMet). The apparently futile AdoMet-dependent reaction of HMTs was assigned a role in repairing chiral damage to AdoMet in yeast: yeast HMTs strongly prefer (R,S)- to (S,S)-AdoMet and thereby limit (R,S)-AdoMet build-up [Vinci and Clarke (2010) J. Biol. Chem. 285, 20526-20531]. In the present study, we show that bacterial, plant, protistan and animal HMTs likewise prefer (R,S)- over (S,S)-AdoMet, that their ability to use SMM varies greatly and is associated with the likely prevalence of SMM in the environment of the organism and that most HMTs cannot use S-ribosylMet. Taken with results from comparative genomic and phylogenetic analyses, these data imply that (i) the ancestral function of HMTs was (R,S)-AdoMet repair, (ii) the efficient use of SMM reflects the repurposing of HMTs after the evolutionary advent of plants introduced SMM into the biosphere, (iii) this plant-driven repurposing was facile and occurred independently in various lineages, and (iv) HMTs have little importance in S-ribosylMet metabolism.


Asunto(s)
Homocisteína S-Metiltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimología , S-Adenosilmetionina/metabolismo , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Evolución Molecular , Homocisteína S-Metiltransferasa/química , Homocisteína S-Metiltransferasa/genética , Mamíferos/clasificación , Mamíferos/genética , Mamíferos/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/genética
5.
Biochem J ; 463(1): 145-55, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25014715

RESUMEN

The TenA protein family occurs in prokaryotes, plants and fungi; it has two subfamilies, one (TenA_C) having an active-site cysteine, the other (TenA_E) not. TenA_C proteins participate in thiamin salvage by hydrolysing the thiamin breakdown product amino-HMP (4-amino-5-aminomethyl-2-methylpyrimidine) to HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine); the function of TenA_E proteins is unknown. Comparative analysis of prokaryote and plant genomes predicted that (i) TenA_E has a salvage role similar to, but not identical with, that of TenA_C and (ii) that TenA_E and TenA_C also have non-salvage roles since they occur in organisms that cannot make thiamin. Recombinant Arabidopsis and maize TenA_E proteins (At3g16990, GRMZM2G080501) hydrolysed amino-HMP to HMP and, far more actively, hydrolysed the N-formyl derivative of amino-HMP to amino-HMP. Ablating the At3g16990 gene in a line with a null mutation in the HMP biosynthesis gene ThiC prevented its rescue by amino-HMP. Ablating At3g16990 in the wild-type increased sensitivity to paraquat-induced oxidative stress; HMP overcame this increased sensitivity. Furthermore, the expression of TenA_E and ThiC genes in Arabidopsis and maize was inversely correlated. These results indicate that TenA_E proteins mediate amidohydrolase and aminohydrolase steps in the salvage of thiamin breakdown products. As such products can be toxic, TenA_E proteins may also pre-empt toxicity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hidrolasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Tiamina/metabolismo , Zea mays/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Herbicidas/farmacología , Hidrolasas/genética , Proteínas Hierro-Azufre/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Paraquat/farmacología , Tiamina/genética , Zea mays/genética
6.
Proc Natl Acad Sci U S A ; 107(23): 10412-7, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20489182

RESUMEN

Iron-sulfur (Fe/S) cluster enzymes are crucial to life. Their assembly requires a suite of proteins, some of which are specific for particular subsets of Fe/S enzymes. One such protein is yeast Iba57p, which aconitase and certain radical S-adenosylmethionine enzymes require for activity. Iba57p homologs occur in all domains of life; they belong to the COG0354 protein family and are structurally similar to various folate-dependent enzymes. We therefore investigated the possible relationship between folates and Fe/S cluster enzymes using the Escherichia coli Iba57p homolog, YgfZ. NMR analysis confirmed that purified YgfZ showed stereoselective folate binding. Inactivating ygfZ reduced the activities of the Fe/S tRNA modification enzyme MiaB and certain other Fe/S enzymes, although not aconitase. When successive steps in folate biosynthesis were ablated, folE (lacking pterins and folates) and folP (lacking folates) mutants mimicked the ygfZ mutant in having low MiaB activities, whereas folE thyA mutants supplemented with 5-formyltetrahydrofolate (lacking pterins and depleted in dihydrofolate) and gcvP glyA mutants (lacking one-carbon tetrahydrofolates) had intermediate MiaB activities. These data indicate that YgfZ requires a folate, most probably tetrahydrofolate. Importantly, the ygfZ mutant was hypersensitive to oxidative stress and grew poorly on minimal media. COG0354 genes of bacterial, archaeal, fungal, protistan, animal, or plant origin complemented one or both of these growth phenotypes as well as the MiaB activity phenotype. Comparative genomic analysis indicated widespread functional associations between COG0354 proteins and Fe/S cluster metabolism. Thus COG0354 proteins have an ancient, conserved, folate-dependent function in the activity of certain Fe/S cluster enzymes.


Asunto(s)
Escherichia coli/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Tetrahidrofolatos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Estructura Molecular , Mutación , Estrés Oxidativo , Unión Proteica , Tetrahidrofolatos/química
7.
J Bacteriol ; 191(13): 4158-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19395485

RESUMEN

Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.


Asunto(s)
Aldehído-Liasas/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Aldehído-Liasas/genética , Secuencia de Aminoácidos , Bacterias/genética , Biopterinas/análogos & derivados , Biopterinas/química , Biopterinas/metabolismo , Cromatografía Líquida de Alta Presión , Biología Computacional , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Prueba de Complementación Genética , Vectores Genéticos , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Neopterin/análogos & derivados , Neopterin/química , Neopterin/metabolismo , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/clasificación , Liasas de Fósforo-Oxígeno/genética , Filogenia , Homología de Secuencia de Aminoácido , Tetrahidrofolatos/química , Tetrahidrofolatos/metabolismo
8.
Plant Physiol ; 146(4): 1515-27, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245455

RESUMEN

Pterin-4a-carbinolamine dehydratases (PCDs) recycle oxidized pterin cofactors generated by aromatic amino acid hydroxylases (AAHs). PCDs are known biochemically only from animals and one bacterium, but PCD-like proteins (COG2154 in the Clusters of Orthologous Groups [COGs] database) are encoded by many plant and microbial genomes. Because these genomes often encode no AAH homologs, the annotation of their COG2154 proteins as PCDs is questionable. Moreover, some COG2154 proteins lack canonical residues that are catalytically important in mammalian PCDs. Diverse COG2154 proteins of plant, fungal, protistan, and prokaryotic origin were therefore tested for PCD activity by functional complementation in Escherichia coli, and the plant proteins were localized using green fluorescent protein fusions. Higher and lower plants proved to have two COG2154 proteins, a mitochondrial one with PCD activity and a noncanonical, plastidial one without. Phylogenetic analysis indicated that the latter is unique to plants and arose from the former early in the plant lineage. All 10 microbial COG2154 proteins tested had PCD activity; six of these came from genomes with no AAH, and six were noncanonical. The results suggested the motif [EDKH]-x(3)-H-[HN]-[PCS]-x(5,6)-[YWF]-x(9)-[HW]-x(8,15)-D as a signature for PCD activity. Organisms having a functional PCD but no AAH partner include angiosperms, yeast, and various prokaryotes. In these cases, PCD presumably has another function. An ancillary role in molybdopterin cofactor metabolism, hypothesized from phylogenomic evidence, was supported by demonstrating significantly lowered activities of two molybdoenzymes in Arabidopsis thaliana PCD knockout mutants. Besides this role, we propose that partnerless PCDs support the function of as yet unrecognized pterin-dependent enzymes.


Asunto(s)
Bacterias/enzimología , Hidroliasas/metabolismo , Plantas/enzimología , Secuencia de Aminoácidos , Hidroliasas/química , Hidroliasas/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
9.
J Biol Chem ; 277(45): 42748-54, 2002 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-12207015

RESUMEN

5-Formyltetrahydrofolate cycloligase (5-FCL) catalyzes the conversion of 5-formyltetrahydrofolate (5-CHO-H(4)PteGlu(n)) to 5,10-methenyltetrahydrofolate and is considered to be the main means whereby 5-CHO-H(4)PteGlu(n) is metabolized in mammals, yeast, and bacteria. 5-CHO-H(4)PteGlu(n) is known to occur in plants and to be highly abundant in leaf mitochondria. Genomics-based approaches identified Arabidopsis and tomato cDNAs encoding proteins homologous to 5-FCLs of other organisms but containing N-terminal extensions with the features of mitochondrial targeting peptides. These homologs were shown to have 5-FCL activity by characterizing recombinant enzymes produced in Escherichia coli and by functional complementation of a yeast fau1 mutation with the Arabidopsis 5-FCL cDNA. The recombinant Arabidopsis enzyme is active as a monomer, prefers the penta- to the monoglutamyl form of 5-CHO-H(4)PteGlu(n), and has kinetic properties broadly similar to those of 5-FCLs from other organisms. Enzyme assays and immunoblot analyses indicated that 5-FCL is located predominantly if not exclusively in plant mitochondria and that the mature, active enzyme lacks the putative targeting sequence. Serine hydroxymethyltransferase (SHMT) from plant mitochondria was shown to be inhibited by 5-CHO-H(4)PteGlu(n) as are SHMTs from other organisms. Since mitochondrial SHMT is crucial to photorespiration, 5-FCL may help prevent 5-CHO-H(4)PteGlu(n) from reaching levels that would inhibit this process. Consistent with this possibility, 5-FCL activity was far higher in leaf mitochondria than root mitochondria.


Asunto(s)
Arabidopsis/enzimología , Ligasas de Carbono-Nitrógeno/genética , Mitocondrias/enzimología , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Ligasas de Carbono-Nitrógeno/metabolismo , Clonación Molecular , Cartilla de ADN , ADN Complementario/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 99(19): 12489-94, 2002 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-12221287

RESUMEN

GTP cyclohydrolase I (GCHI) mediates the first and committing step of the pterin branch of the folate-synthesis pathway. In microorganisms and mammals, GCHI is a homodecamer of approximately 26-kDa subunits. Genomic approaches identified tomato and Arabidopsis cDNAs specifying approximately 50-kDa proteins containing two GCHI-like domains in tandem and indicated that such bimodular proteins occur in other plants. Neither domain of these proteins has a full set of the residues involved in substrate binding and catalysis in other GCHIs. The tomato and Arabidopsis cDNAs nevertheless encode functional enzymes, as shown by complementation of a yeast fol2 mutant and by assaying GCHI activity in extracts of complemented yeast cells. Neither domain expressed separately had GCHI activity. Recombinant tomato GCHI formed dihydroneopterin triphosphate as reaction product, as do other GCHIs, but unlike these enzymes it did not show cooperative behavior and was inhibited by its substrate. Denaturing gel electrophoresis verified that the bimodular GCHI polypeptide is not cleaved in vivo into its component domains, and size-exclusion chromatography indicated that the active enzyme is a dimer. The deduced tomato and Arabidopsis GCHI polypeptides lack overt targeting sequences and thus are presumably cytosolic, in contrast to other plant folate-synthesis enzymes, which are mitochondrial proteins with typical signal peptides. GCHI mRNA and protein are strongly in expressed unripe tomato fruits, implying that fruit folate is made in situ rather than imported. As ripening advances, GCHI expression declines sharply, and folate content drops, suggesting that folate synthesis fails to keep pace with turnover.


Asunto(s)
Arabidopsis/metabolismo , Ácido Fólico/biosíntesis , GTP Ciclohidrolasa/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , ADN Complementario/genética , ADN de Plantas/genética , Dimerización , Inhibidores Enzimáticos/farmacología , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/química , GTP Ciclohidrolasa/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Guanosina Trifosfato/farmacología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pterinas/química , Pterinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA