Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 16(10): e2006760, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365493

RESUMEN

Understanding how neurons encode and compute information is fundamental to our study of the brain, but opportunities for hands-on experience with neurophysiological techniques on live neurons are scarce in science education. Here, we present Spikeling, an open source in silico implementation of a spiking neuron that costs £25 and mimics a wide range of neuronal behaviours for classroom education and public neuroscience outreach. Spikeling is based on an Arduino microcontroller running the computationally efficient Izhikevich model of a spiking neuron. The microcontroller is connected to input ports that simulate synaptic excitation or inhibition, to dials controlling current injection and noise levels, to a photodiode that makes Spikeling light sensitive, and to a light-emitting diode (LED) and speaker that allows spikes to be seen and heard. Output ports provide access to variables such as membrane potential for recording in experiments or digital signals that can be used to excite other connected Spikelings. These features allow for the intuitive exploration of the function of neurons and networks mimicking electrophysiological experiments. We also report our experience of using Spikeling as a teaching tool for undergraduate and graduate neuroscience education in Nigeria and the United Kingdom.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Neurociencias/educación , Neurociencias/instrumentación , Animales , Relaciones Comunidad-Institución , Simulación por Computador , Diseño de Equipo , Red Nerviosa/fisiología , Redes Neurales de la Computación , Sinapsis/fisiología
2.
Curr Biol ; 28(13): 2018-2032.e5, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29937350

RESUMEN

Animal eyes have evolved to process behaviorally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in vivo 2-photon imaging of retinal neurons, and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye and are linked to a systematic shift in inner retinal function: above the animal, there is little color in nature, and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are color rich and are predominately surveyed by chromatic and color-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field, bipolar cell terminals encoding achromatic and color-opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain UV system piggybacks onto retinal circuits, likely to support prey capture.


Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Pez Cebra/fisiología , Animales , Sensibilidad de Contraste , Femenino , Masculino , Retina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA