Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(13): 7083-7093, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37254802

RESUMEN

CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR/Cas-based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that works on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.


Asunto(s)
Arabidopsis , Factores de Transcripción , Activación Transcripcional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética
3.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824723

RESUMEN

CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR-Cas based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that worked on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.

4.
Methods Mol Biol ; 2464: 223-244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35258836

RESUMEN

Recent advances in DNA synthesis and assembly allow for genetic constructs to be designed and constructed in high throughput. Characterizing large numbers of variant genetic designs is not feasible with low-throughput and time-consuming plant transformation workflows. Protoplast transformation offers a rapid, high-throughput compatible alternative for testing genetic constructs in plant-relevant molecular environments. Here, we describe a protocol for protoplast transformation using a recent experiment in genetic optimization of dCas9-based programmable transcription activators as an example.


Asunto(s)
Protoplastos , Setaria (Planta) , Plantas/genética , Setaria (Planta)/genética , Transfección
5.
Front Genome Ed ; 22021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34368798

RESUMEN

The production of transgenic or gene edited plants requires considerable time and effort. It is of value to know at the onset of a project whether the transgenes or gene editing reagents are functioning as predicted. To test molecular reagents transiently, we implemented an improved, Agrobacterium tumefaciens-based co-culture method called Fast-TrACC (Fast Treated Agrobacterium Co-Culture). Fast-TrACC delivers reagents to seedlings, allowing high throughput, and uses a luciferase reporter to monitor and calibrate the efficiency of reagent delivery. We demonstrate the use of Fast-TrACC in multiple solanaceous species and apply the method to test promoter activity and the effectiveness of gene editing reagents.

6.
CRISPR J ; 3(5): 350-364, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095045

RESUMEN

CRISPR-Cas-based transcriptional activators allow genetic engineers to specifically induce expression of one or many target genes in trans. Here we review the many design variations of these versatile tools and compare their effectiveness in different eukaryotic systems. Lastly, we highlight several applications of programmable transcriptional activation to interrogate and engineer complex biological processes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Transactivadores/genética , Activación Transcripcional , Animales , Expresión Génica , Humanos , Plantas/genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA