Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 14(9): e1007589, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188888

RESUMEN

Canine malignant melanoma, a significant cause of mortality in domestic dogs, is a powerful comparative model for human melanoma, but little is known about its genetic etiology. We mapped the genomic landscape of canine melanoma through multi-platform analysis of 37 tumors (31 mucosal, 3 acral, 2 cutaneous, and 1 uveal) and 17 matching constitutional samples including long- and short-insert whole genome sequencing, RNA sequencing, array comparative genomic hybridization, single nucleotide polymorphism array, and targeted Sanger sequencing analyses. We identified novel predominantly truncating mutations in the putative tumor suppressor gene PTPRJ in 19% of cases. No BRAF mutations were detected, but activating RAS mutations (24% of cases) occurred in conserved hotspots in all cutaneous and acral and 13% of mucosal subtypes. MDM2 amplifications (24%) and TP53 mutations (19%) were mutually exclusive. Additional low-frequency recurrent alterations were observed amidst low point mutation rates, an absence of ultraviolet light mutational signatures, and an abundance of copy number and structural alterations. Mutations that modulate cell proliferation and cell cycle control were common and highlight therapeutic axes such as MEK and MDM2 inhibition. This mutational landscape resembles that seen in BRAF wild-type and sun-shielded human melanoma subtypes. Overall, these data inform biological comparisons between canine and human melanoma while suggesting actionable targets in both species.


Asunto(s)
Melanoma/genética , Melanoma/veterinaria , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/veterinaria , Animales , Ciclo Celular/genética , Proliferación Celular/genética , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Enfermedades de los Perros/genética , Perros , Femenino , Masculino , Melanoma/sangre , Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal/genética , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/patología , Análisis de Matrices Tisulares
2.
Genome Res ; 27(4): 524-532, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28373299

RESUMEN

Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.


Asunto(s)
Aberraciones Cromosómicas , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Telomerasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Femenino , GTP Fosfohidrolasas/genética , Genes de Neurofibromatosis 1 , Humanos , Masculino , Melanoma/patología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Telomerasa/metabolismo , Transcriptoma , Quinasas p21 Activadas/genética
3.
Nature ; 480(7375): 99-103, 2011 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-22080950

RESUMEN

So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds. Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case-control sample. Likewise, it was similarly associated in an independent case-control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.


Asunto(s)
Predisposición Genética a la Enfermedad , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Sumoilación/genética , Adulto Joven
4.
Vet Comp Oncol ; 22(1): 30-41, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38053317

RESUMEN

A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.


Asunto(s)
Enfermedades de los Perros , Neoplasias , Perros , Humanos , Animales , Enfermedades de los Perros/genética , Neoplasias/genética , Neoplasias/veterinaria , Genómica , Mutación , Biomarcadores de Tumor/genética
5.
Biomark Res ; 11(1): 73, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491309

RESUMEN

BACKGROUND: A subset of triple-negative breast cancers (TNBCs) have homologous recombination deficiency with upregulation of compensatory DNA repair pathways. PIKTOR, a combination of TAK-228 (TORC1/2 inhibitor) and TAK-117 (PI3Kα inhibitor), is hypothesized to increase genomic instability and increase DNA damage repair (DDR) deficiency, leading to increased sensitivity to DNA-damaging chemotherapy and to immune checkpoint blockade inhibitors. METHODS: 10 metastatic TNBC patients received 4 mg TAK-228 and 200 mg TAK-117 (PIKTOR) orally each day for 3 days followed by 4 days off, weekly, until disease progression (PD), followed by intravenous cisplatin 75 mg/m2 plus nab paclitaxel 220 mg/m2 every 3 weeks for up to 6 cycles. Patients received subsequent treatment with pembrolizumab and/or chemotherapy. Primary endpoints were objective response rate with cisplatin/nab paclitaxel and safety. Biopsies of a metastatic lesion were collected prior to and at PD on PIKTOR. Whole exome and RNA-sequencing and reverse phase protein arrays (RPPA) were used to phenotype tumors pre- and post-PIKTOR for alterations in DDR, proliferation, and immune response. RESULTS: With cisplatin/nab paclitaxel (cis/nab pac) therapy post PIKTOR, 3 patients had clinical benefit (1 partial response (PR) and 2 stable disease (SD) ≥ 6 months) and continued to have durable benefit in progression-free survival with pembrolizumab post-cis/nab pac for 1.2, 2, and 3.6 years. Their post-PIKTOR metastatic tissue displayed decreased mismatch repair (MMR), increased tumor mutation burden, and significantly lower levels of 53BP1, DAG Lipase ß, GCN2, AKT Ser473, and PKCzeta Thr410/403 compared to pre-PIKTOR tumor tissue. CONCLUSIONS: Priming patients' chemotherapy-pretreated metastatic TNBC with PIKTOR led to very prolonged response/disease control with subsequent cis/nab pac, followed by pembrolizumab, in 3 of 10 treated patients. Our multi-omics approach revealed a higher number of genomic alterations, reductions in MMR, and alterations in immune and stress response pathways post-PIKTOR in patients who had durable responses. TRIAL REGISTRATION: This clinical trial was registered on June 21, 2017, at ClinicalTrials.gov using identifier NCT03193853.

6.
Cell Rep Methods ; 3(5): 100463, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323571

RESUMEN

The lack of preparedness for detecting and responding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen (i.e., COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at day zero, i.e., the time of the first reported case, would be of significant value. Next-generation sequencing (NGS) has such capabilities; however, it has limited detection sensitivity for low-copy-number pathogens. Here, we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS work flow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Pandemias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
Am J Hum Genet ; 84(4): 445-58, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19361613

RESUMEN

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Edad de Inicio , Anciano , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sitio de Iniciación de la Transcripción , Transcripción Genética
8.
PLoS One ; 17(7): e0264986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867969

RESUMEN

Cancer genomic heterogeneity presents significant challenges for understanding oncogenic processes and for cancer's clinical management. Variation in driver mutation frequency between patients with the same tumor type as well as within an individual patients' cancer can shape the use of mutations as diagnostic, prognostic, and predictive biomarkers. We have characterized genomic heterogeneity between and within canine splenic hemangiosarcoma (HSA), a common naturally occurring cancer in pet dogs that is similar to human angiosarcoma (AS). HSA is a clinically, physiologically, and genomically complex canine cancer that may serve as a valuable model for understanding the origin and clinical impact of cancer heterogeneity. We conducted a prospective collection of 52 splenic masses from 43 dogs (27 HSA, 15 benign masses, and 1 stromal sarcoma) presenting for emergency care with hemoperitoneum secondary to a ruptured splenic mass. Multi-platform genomic analysis included matched tumor/normal targeted sequencing panel and exome sequencing. We found candidate somatic cancer driver mutations in 14/27 (52%) HSAs. Among recurrent candidate driver mutations, TP53 was most commonly mutated (30%) followed by PIK3CA (15%), AKT1 (11%), and CDKN2AIP (11%). We also identified significant intratumoral genomic heterogeneity, consistent with a branched evolution model, through multi-region exome sequencing of three distinct tumor regions from selected primary splenic tumors. These data provide new perspectives on the genomic landscape of this veterinary cancer and suggest a cross-species value for using HSA in pet dogs as a naturally occurring model of intratumoral heterogeneity.


Asunto(s)
Enfermedades de los Perros , Hemangiosarcoma , Neoplasias del Bazo , Animales , Enfermedades de los Perros/genética , Perros , Genómica , Hemangiosarcoma/genética , Hemangiosarcoma/veterinaria , Humanos , Mutación , Estudios Prospectivos , Neoplasias del Bazo/genética , Neoplasias del Bazo/veterinaria , Secuenciación del Exoma
9.
Neuron ; 54(5): 713-20, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17553421

RESUMEN

The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimer's disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimer's neuropathology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Química Encefálica/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Regulación de la Expresión Génica/genética , Frecuencia de los Genes , Marcadores Genéticos/genética , Pruebas Genéticas , Haplotipos/genética , Humanos , Mutación , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación , Factores de Riesgo , Proteínas tau/metabolismo
10.
PLoS One ; 16(4): e0248097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33826614

RESUMEN

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Asunto(s)
Bencimidazoles/administración & dosificación , Genómica , Melanoma , Proteínas Proto-Oncogénicas B-raf , Neoplasias Cutáneas , Adulto , Anciano , Femenino , Humanos , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Persona de Mediana Edad , Metástasis de la Neoplasia , Proyectos Piloto , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
11.
Genes (Basel) ; 11(11)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167491

RESUMEN

Canine gastric dilatation-volvulus (GDV) is a common life-threatening condition occurring primarily in large and giant breeds with a 3.9% to 36.7% lifetime risk. The genetic correlates of GDV have not previously been systematically explored. We undertook an inter-breed genome-wide association analysis (GWAS) of 253 dogs from ten breeds including 106 healthy dogs and 147 dogs with at least one GDV episode. SNP array genotyping followed by imputation was conducted on 241 samples to identify GDV-associated single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs). A subset of 33 dogs (15 healthy dogs and 18 GDV patients from the three most represented breeds) was characterized by whole genome sequencing (WGS). After genome-wide Bonferroni correction, we identified a significant putatively protective intergenic SNP (rs851737064) across all breeds. The signal was most significant in Collies, German Shorthaired Pointers, and Great Danes. Subsequent focused analysis across these three breeds identified 12 significant additional putatively protective or deleterious SNPs. Notable significant SNPs included those occurring in genes involved in gastric tone and motility including VHL, NALCN, and PRKCZ. These data provide important new clues to canine GDV risk factors and facilitate generation of hypotheses regarding the genetic and molecular underpinnings this syndrome.


Asunto(s)
Dilatación Gástrica/genética , Vólvulo Gástrico/genética , Factores de Edad , Animales , Cruzamiento , Variaciones en el Número de Copia de ADN/genética , Enfermedades de los Perros/genética , Perros , Femenino , Dilatación Gástrica/complicaciones , Dilatación Gástrica/fisiopatología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Masculino , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Vólvulo Gástrico/complicaciones , Vólvulo Gástrico/metabolismo
12.
J Vet Intern Med ; 33(3): 1392-1402, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30939225

RESUMEN

BACKGROUND: Polymerase chain reaction for antigen receptor rearrangement (PARR) is a molecular diagnostic tool used for discrimination of lymphoid malignancies in dogs from benign processes. Assay variations have been described and are commercially available, but performance metrics are not uniformly reported. OBJECTIVES: To describe performance (accuracy, sensitivity, specificity) and rigorous benchmarking of a PARR protocol (ePARR) in clinically relevant samples. ANIMALS: One hundred eighty-one client-owned dogs. METHODS: Lymphoma and benign tissues representative of the clinical spectrum with gold standard histopathologic and immunohistochemical diagnoses were collected. Assay development and benchmarking were performed on fresh frozen (FF) tissue, formalin-fixed paraffin-embedded (FFPE) tissue, flow cytometry pellets, and air-dried fine-needle aspirates (FNA). Assay performance was determined for FFPE from 56 dogs (18 B-cell lymphoma, 24 T-cell lymphoma, and 14 non-lymphoma), 80 frozen flow cytometry pellets (66 B-cell lymphoma, 14 T-cell lymphoma, 0 non-lymphoma), and 41 air-dried FNA slides (23 lymphoma, 18 non-lymphoma). RESULTS: For discrimination of lymphoma versus non-lymphoma, ePARR had 92% and 92% sensitivity and specificity on FFPE with 92% accuracy, 85% sensitivity from flow cytometry pellets (non-lymphoma was not evaluated to calculate specificity) with 85% accuracy, and 100% and 100% sensitivity and specificity for FNA with 100% accuracy. Stringent quality control criteria decreased assay success rate without significant performance improvement. Performance metrics were lower in most cases for discrimination of B- or T-cell versus non-B- or non-T-cell samples than for lymphoma versus non-lymphoma. CONCLUSIONS AND CLINICAL IMPORTANCE: These benchmarking data facilitate effective interpretation and application of PARR assays in multiple sample types.


Asunto(s)
Enfermedades de los Perros/genética , Enfermedades de los Perros/inmunología , Reordenamiento Génico , Linfoma/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Benchmarking , Enfermedades de los Perros/diagnóstico , Perros , Inmunofenotipificación/veterinaria , Linfoma/genética , Linfoma/inmunología , Linfoma de Células B/genética , Linfoma de Células B/inmunología , Linfoma de Células B/veterinaria , Linfoma de Células T/genética , Linfoma de Células T/inmunología , Linfoma de Células T/veterinaria , Reacción en Cadena de la Polimerasa/métodos , Estudios Prospectivos , Receptores de Antígenos/genética
13.
Commun Biol ; 2: 266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341965

RESUMEN

Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Distrofina/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación , Osteosarcoma/genética , Osteosarcoma/veterinaria , Animales , Perros , Secuenciación Completa del Genoma
14.
Clin Cancer Res ; 25(19): 5866-5877, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31431454

RESUMEN

PURPOSE: Naturally occurring primary canine lung cancers share clinicopathologic features with human lung cancers in never-smokers, but the genetic underpinnings of canine lung cancer are unknown. We have charted the genomic landscape of canine lung cancer and performed functional characterization of novel, recurrent HER2 (ERBB2) mutations occurring in canine pulmonary adenocarcinoma (cPAC). EXPERIMENTAL DESIGN: We performed multiplatform genomic sequencing of 88 primary canine lung tumors or cell lines. Additionally, in cPAC cell lines, we performed functional characterization of HER2 signaling and evaluated mutation-dependent HER2 inhibitor drug dose-response. RESULTS: We discovered somatic, coding HER2 point mutations in 38% of cPACs (28/74), but none in adenosquamous (cPASC, 0/11) or squamous cell (cPSCC, 0/3) carcinomas. The majority (93%) of HER2 mutations were hotspot V659E transmembrane domain (TMD) mutations comparable to activating mutations at this same site in human cancer. Other HER2 mutations were located in the extracellular domain and TMD. HER2 V659E was detected in the plasma of 33% (2/6) of dogs with localized HER2 V659E tumors. HER2 V659E cPAC cell lines displayed constitutive phosphorylation of AKT and significantly higher sensitivity to the HER2 inhibitors lapatinib and neratinib relative to HER2-wild-type cell lines (IC50 < 200 nmol/L in HER2 V659E vs. IC50 > 2,500 nmol/L in HER2 WT). CONCLUSIONS: This study creates a foundation for molecular understanding of and drug development for canine lung cancer. These data also establish molecular contexts for comparative studies in dogs and humans of low mutation burden, never-smoker lung cancer, and mutant HER2 function and inhibition.


Asunto(s)
Adenocarcinoma del Pulmón/veterinaria , Enfermedades de los Perros/genética , Neoplasias Pulmonares/veterinaria , Mutación , Receptor ErbB-2/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Supervivencia Celular/efectos de los fármacos , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/patología , Perros , Femenino , Lapatinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Transducción de Señal , Células Tumorales Cultivadas
15.
Bioinformatics ; 23(1): 57-63, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17062589

RESUMEN

MOTIVATION: The technology to genotype single nucleotide polymorphisms (SNPs) at extremely high densities provides for hypothesis-free genome-wide scans for common polymorphisms associated with complex disease. However, we find that some errors introduced by commonly employed genotyping algorithms may lead to inflation of false associations between markers and phenotype. RESULTS: We have developed a novel SNP genotype calling program, SNiPer-High Density (SNiPer-HD), for highly accurate genotype calling across hundreds of thousands of SNPs. The program employs an expectation-maximization (EM) algorithm with parameters based on a training sample set. The algorithm choice allows for highly accurate genotyping for most SNPs. Also, we introduce a quality control metric for each assayed SNP, such that poor-behaving SNPs can be filtered using a metric correlating to genotype class separation in the calling algorithm. SNiPer-HD is superior to the standard dynamic modeling algorithm and is complementary and non-redundant to other algorithms, such as BRLMM. Implementing multiple algorithms together may provide highly accurate genotyping calls, without inflation of false positives due to systematically miss-called SNPs. A reliable and accurate set of SNP genotypes for increasingly dense panels will eliminate some false association signals and false negative signals, allowing for rapid identification of disease susceptibility loci for complex traits. AVAILABILITY: SNiPer-HD is available at TGen's website: http://www.tgen.org/neurogenomics/data.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Mapeo Cromosómico , Bases de Datos Genéticas , Reacciones Falso Positivas , Perfilación de la Expresión Génica , Genotipo , Humanos , Modelos Genéticos , Modelos Estadísticos , Familia de Multigenes , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Población Blanca/genética
16.
Birth Defects Res A Clin Mol Teratol ; 82(6): 441-52, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18452155

RESUMEN

BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome-wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of approximately 3.0 mapping to 2q33.1-q35 and 7p21.1-pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of approximately 3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1-q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1-21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families.


Asunto(s)
Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 7/genética , Predisposición Genética a la Enfermedad , Defectos del Tubo Neural/genética , Femenino , Ligamiento Genético , Genotipo , Humanos , Masculino , Linaje
17.
Neurodegener Dis ; 5(2): 60-4, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17975299

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressively disabling impairments in memory, cognition, and non-cognitive behavioural symptoms. Sporadic AD is multifactorial and genetically complex. While several monogenic mutations cause early-onset AD and gene alleles have been suggested as AD susceptibility factors, the only extensively validated susceptibility gene for late-onset AD is the apolipoprotein E (APOE) epsilon4 allele. Alleles of the APOE gene do not account for all of the genetic load calculated to be responsible for AD predisposition. Recently, polymorphisms across the neuronal sortilin-related receptor (SORL1) gene were shown to be significantly associated with AD in several cohorts. Here we present the results of our large case-control whole-genome scan at over 500,000 polymorphisms which presents weak evidence for association and potentially narrows the association interval.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Marcadores Genéticos/genética , Humanos , Masculino , Polimorfismo Genético/genética
18.
Clin Cancer Res ; 24(8): 1932-1943, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440177

RESUMEN

Purpose: Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare, aggressive ovarian cancer in young women that is universally driven by loss of the SWI/SNF ATPase subunits SMARCA4 and SMARCA2. A great need exists for effective targeted therapies for SCCOHT.Experimental Design: To identify underlying therapeutic vulnerabilities in SCCOHT, we conducted high-throughput siRNA and drug screens. Complementary proteomics approaches profiled kinases inhibited by ponatinib. Ponatinib was tested for efficacy in two patient-derived xenograft (PDX) models and one cell-line xenograft model of SCCOHT.Results: The receptor tyrosine kinase (RTK) family was enriched in siRNA screen hits, with FGFRs and PDGFRs being overlapping hits between drug and siRNA screens. Of multiple potent drug classes in SCCOHT cell lines, RTK inhibitors were only one of two classes with selectivity in SCCOHT relative to three SWI/SNF wild-type ovarian cancer cell lines. We further identified ponatinib as the most effective clinically approved RTK inhibitor. Reexpression of SMARCA4 was shown to confer a 1.7-fold increase in resistance to ponatinib. Subsequent proteomic assessment of ponatinib target modulation in SCCOHT cell models confirmed inhibition of nine known ponatinib target kinases alongside 77 noncanonical ponatinib targets in SCCOHT. Finally, ponatinib delayed tumor doubling time 4-fold in SCCOHT-1 xenografts while reducing final tumor volumes in SCCOHT PDX models by 58.6% and 42.5%.Conclusions: Ponatinib is an effective agent for SMARCA4-mutant SCCOHT in both in vitro and in vivo preclinical models through its inhibition of multiple kinases. Clinical investigation of this FDA-approved oncology drug in SCCOHT is warranted. Clin Cancer Res; 24(8); 1932-43. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/patología , Imidazoles/farmacología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/farmacología , Animales , Carcinoma de Células Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Biotechniques ; 42(1): 77-83, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17269488

RESUMEN

Whole genome amplification by multiple displacement amplification (MDA) offers investigators using precious genomic DNA samples a high fidelity method for amplifying nanogram quantities of DNA several thousandfold. This becomes especially important for the modemrn day genomics researcher who more and more commonly is applying today's genome scanning technologies to patient cohort samples collected years ago that are irrecoverable and invariably in short supply. We present evidence here that MDA-prepared genomic DNA includes artifacts of chromosomal copy number that resemble copy number polymorphisms (CNPs) upon analysis of the DNA on the Affymetrix 10K GeneChip. The study of CNPs in both health and disease is a rapidly growing area of research, however our current understanding of the relevance of CNPs is incomplete. Our data indicate that utilization of whole genome-amplified samples for analysis heavily reliant on accurate copy number retention could be confounded if the genomic DNA sample was subjected to MDA. We recommend that small amounts of patient cohort DNA stocks be set aside and not subjected to whole genome amplification in order to facilitate the unbiased determination of chromosomal copy numbers when desired.


Asunto(s)
Cromosomas Humanos , Dosificación de Gen , Genoma Humano , Técnicas de Amplificación de Ácido Nucleico , Artefactos , Aberraciones Cromosómicas , Humanos , Polimorfismo de Nucleótido Simple
20.
BMC Genomics ; 6: 138, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-16197552

RESUMEN

BACKGROUND: Pooling genomic DNA samples within clinical classes of disease followed by genotyping on whole-genome SNP microarrays, allows for rapid and inexpensive genome-wide association studies. Key to the success of these studies is the accuracy of the allelic frequency calculations, the ability to identify false-positives arising from assay variability and the ability to better resolve association signals through analysis of neighbouring SNPs. RESULTS: We report the accuracy of allelic frequency measurements on pooled genomic DNA samples by comparing these measurements to the known allelic frequencies as determined by individual genotyping. We describe modifications to the calculation of k-correction factors from relative allele signal (RAS) values that remove biases and result in more accurate allelic frequency predictions. Our results show that the least accurate SNPs, those most likely to give false-positives in an association study, are identifiable by comparing their frequencies to both those from a known database of individual genotypes and those of the pooled replicates. In a disease with a previously identified genetic mutation, we demonstrate that one can identify the disease locus through the comparison of the predicted allelic frequencies in case and control pools. Furthermore, we demonstrate improved resolution of association signals using the mean of individual test-statistics for consecutive SNPs windowed across the genome. A database of k-correction factors for predicting allelic frequencies for each SNP, derived from several thousand individually genotyped samples, is provided. Lastly, a Perl script for calculating RAS values for the Affymetrix platform is provided. CONCLUSION: Our results illustrate that pooling of DNA samples is an effective initial strategy to identify a genetic locus. However, it is important to eliminate inaccurate SNPs prior to analysis by comparing them to a database of individually genotyped samples as well as by comparing them to replicates of the pool. Lastly, detection of association signals can be improved by incorporating data from neighbouring SNPs.


Asunto(s)
Biología Computacional/métodos , ADN/genética , Genotipo , Polimorfismo de Nucleótido Simple , Alelos , ADN/metabolismo , Bases de Datos Genéticas , Frecuencia de los Genes , Genoma , Genoma Humano , Humanos , Recién Nacido , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Muerte Súbita del Lactante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA