Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838245

RESUMEN

The activity of Ru-based alkaline hydrogen oxidation reaction (HOR) electrocatalysts usually decreases rapidly at potentials higher than 0.1 V (vs a reversible hydrogen electrode (RHE)), which significantly limits the lifetime of fuel cells. It is found that this phenomenon is caused by the overadsorption of the O species due to the overcharging of Ru nanoparticles at high potentials. Here, Mn1Ox(OH)y clusters-modified Ru nanoparticles (Mn1Ox(OH)y@Ru/C) were prepared to promote charge transfer from overcharged Ru nanoparticles to Mn1Ox(OH)y clusters. Mn1Ox(OH)y@Ru/C exhibits high HOR activity and stability over a wide potential range of 0-1.0 V. Moreover, a hydroxide exchange membrane fuel cell with a Mn1Ox(OH)y@Ru/C anode delivers a high peak power density of 1.731 W cm-2, much superior to that of a Pt/C anode. In situ X-ray absorption fine structure (XAFS) analysis and density functional theory (DFT) calculations reveal that Mn in Mn1Ox(OH)y clusters could receive more electrons from overcharged Ru at higher potentials and significantly decrease the overadsorption of the O species on Ru, thus permitting the HOR on Ru to proceed at high potentials. This study provides guidance for the design of alkaline HOR catalysts without activity decay at high potentials.

2.
Small ; 20(35): e2401404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644200

RESUMEN

Developing low-loading platinum-group-metal (PGM) catalysts is one of the key challenges in commercializing anion-exchange-membrane-fuel-cells (AEMFCs), especially for hydrogen oxidation reaction (HOR). Here, ruthenium-iridium nanoparticles being deposited on a Zn-N species-doped carbon carrier (Ru6Ir/Zn-N-C) are synthesized and used as an anodic catalyst for AEMFCs. Ru6Ir/Zn-N-C shows extremely high mass activity (5.87 A mgPGM -1) and exchange current density (0.92 mA cm-2), which is 15.1 and 3.9 times that of commercial Pt/C, respectively. Based on the Ru6Ir/Zn-N-C AEMFCs achieve a peak power density of 1.50 W cm-2, surpassing the state-of-the-art commercial PtRu catalysts and the power ratio of the normalized loading is 14.01 W mgPGM anode -1 or 5.89 W mgPGM -1 after decreasing the anode loading (87.49 µg cm-2) or the total PGM loading (0.111 mg cm-2), satisfying the US Department of Energy's PGM loading target. Moreover, the solvent and solute isotope separation method is used for the first time to reveal the kinetic process of HOR, which shows the reaction is influenced by the adsorption of H2O and OH-. The improvement of the hydrogen bond network connectivity of the electric double layer by adjusting the interfacial H2O structure together with the optimized HBE and OHBE is proposed to be responsible for the high HOR activity of Ru6Ir/Zn-N-C.

3.
Inorg Chem ; 63(31): 14602-14608, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39037614

RESUMEN

The electrocatalytic urea oxidation reaction (UOR) provides a promising alternative to the oxygen evolution reaction (OER) for various renewable energy-related systems owing to its lower thermodynamic barriers. However, its optimization and commercial utilization were hampered due to a lack of mechanistic understanding. Here, we demonstrate a Ce-doped Ni3S2 catalyst supported on Ni foam (Ce-Ni3S2/NF) with superior activity toward UOR. The resultant Ce-Ni3S2/NF catalyst exhibits a lower Tafel slope of 20.3 mV dec-1, a higher current density of 100 mA cm-2 at 1.39 V versus RHE, and better durability than those for Ni3S2/NF. Based on in situ synchrotron radiation X-ray absorption spectroscopy, in situ Fourier transform infrared (FTIR), and in situ Raman spectroscopy, we observe the structural reconstruction of sulfide and identify the adsorbed intermediates during UOR. Density functional theory (DFT) calculations reveal that Ce can regulate the electronic structure of Ni through Ce(4f)-O(2p)-Ni(3d) orbital electronic coupling. The modulated Ni sites have weaker adsorption of carbonaceous intermediates, thus accelerating the UOR. This work provides a promising route for the design of high-activity UOR catalysts.

4.
Inorg Chem ; 58(20): 14238-14243, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31566372

RESUMEN

Heterogeneous catalysts facilitate various chemical reactions through the changing of their surface charge density. Herein, we demonstrate an interface engineering strategy to enhance the Ir catalytic performance for oxidation of CO by constructing Ir/CeO2 nanojunctions using a wet chemical reduction process. The as-prepared Ir/CeO2 nanojunctions show a complete CO conversion temperature (T100) of 110 °C under 1 vol % CO and retains long-term durability even after 24 h. The Ir atoms and CeO2 supports were connected by O atoms, which changes the surface electronic structure of Ir atoms. DFT calculations demonstrate that the significant increase in electron density at the interface between Ir and CeO2 plays a pivotal role in the enhancement of CO oxidation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34133119

RESUMEN

Preferential oxidation (PROX) of CO in hydrogen is of great significance for proton exchange membrane fuel cells (PEMFCs) that need a CO-free hydrogen stream as fuel. The key technical problem is developing catalysts that can efficiently remove CO from the H2-rich stream within the working temperature range of PEMFCs. Herein, we design a Au/Bi2O3 interfacial catalyst for PROX with excellent catalytic performance, which can achieve 100% CO conversion in the PROX reaction over a wide temperature window (70-200 °C) and is perfectly compatible with the operating temperature window (80-180 °C) of PEMFCs. Moreover, the catalyst also demonstrates excellent high flow performance and long-term stability. Density functional theory (DFT) calculations reveal that the electrons transferring from Bi2O3 to Au and then to adsorbed perimeter CO and O2 molecules promote the activation of CO and O2, thus enhancing the catalytic performance of PROX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA