Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 56(26): 7674-7678, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524450

RESUMEN

Methylammonium-mediated phase-evolution behavior of FA1-x MAx PbI3 mixed-organic-cation perovskite (MOCP) is studied. It is found that by simply enriching the MOCP precursor solutions with excess methylammonium cations, the MOCPs form via a dynamic composition-tuning process that is key to obtaining MOCP thin films with superior properties. This simple chemical approach addresses several key challenges, such as control over phase purity, uniformity, grain size, composition, etc., associated with the solution-growth of MOCP thin films with targeted compositions.

2.
Angew Chem Int Ed Engl ; 56(41): 12658-12662, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28671739

RESUMEN

The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single-phase hybrid perovskites of (FAPbI3 )1-x (CsSnI3 )x (0

3.
Angew Chem Int Ed Engl ; 55(47): 14723-14727, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27766739

RESUMEN

Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH4 PbI3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3 NH3 PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4 PbI3 -to-CH3 NH3 PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.

4.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267805

RESUMEN

The lack of river sand is becoming increasingly serious. In this study, we consider how to use sea sand to prepare innovative construction and building materials with excellent mechanical and durability properties. Sulphate corrosion causes expansion, cracking and spalling of concrete, resulting in the reduction or even loss of concrete strength and cementation force. In this paper, artificial seawater, sea sand, industrial waste, steel fiber and polycarboxylate superplasticizer were used to prepare ultra-high-performance polymer cement mortar (SSUHPC), and the sulphate corrosion mechanism was investigated. The strength and cementation force of mortar on the SSUHPC surface decreased and flaked off with the development of sulphate erosion, and the steel fiber rusted and fell off. A 3D model was established based on X-ray computed tomography (X-CT), and the results showed that SSUHPC maintained excellent internal structural characteristics despite severe sulphate erosion on the surface. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were adopted to investigate the sulphate corrosion mechanism of SSUHPC. We found a transition zone within 1-5 mm of the surface of SSUHPC. The Vickers hardness of mortar in this area was increased by 5~15%, and the porosity was reduced to 3.8489%. Obvious structural damage did not occur in this area, but a high content of gypsum appeared. UHPC prepared with seawater sea sand was found to have better sulphate resistance than that prepared with freshwater river sand, which supports the development and utilization of sea sand in concrete.

5.
RSC Adv ; 11(60): 38264-38272, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-35498095

RESUMEN

In this paper, a reduced graphene oxide/polypropylene (rGO/PP) dielectric composite with high dielectric constant and low dielectric loss at a low filler content was prepared via constructing a segregated moderately-reduced graphene network by encapsulation of GO on PP latex particles and subsequent in situ reduction of GO by hydrazine hydrate. GO/PP latex was prepared through artificial PP latex preparation in the presence of GO based on the solution-emulsification technique. As the emulsification proceeded, GO could self-assemble to become encapsulated on the surface of PP latex particles composed of PP and maleic-anhydride-grafted-PP because of the hydrogen bonding interaction between maleic-anhydride-grafted-PP and GO nanosheets. After reduction, the rGO encapsulated PP latex particles were obtained, and after coagulation and hot pressing, a segregated graphene network was achieved at a low content of rGO, demonstrated by TEM images. The dielectric constant at 1 kHz obviously increased from 3.28 for PP to 55.8 for the composite with 1.5 wt% rGO. The dielectric loss of the composite was retained at a low value (1.04). This study provides a new simple and effective strategy for preparing high-performance dielectric composites with high dielectric constant and low dielectric loss, facilitating the wide application of dielectric materials.

6.
RSC Adv ; 10(51): 30716-30722, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516026

RESUMEN

Effective edge oxidation of graphene with high structural integrity is highly desirable yet technically challenging for most practical applications. In this work, we have developed a green and facile strategy to obtain edge-oxidized graphene with good dispersion stability and high electrical conductivity by exploiting high edge reactivity of highly conductive multi-layer graphene and oxidizing radicals (SO4 -˙) generated from sodium persulfate (Na2S2O8) with ferrous ion (Fe2+) activation. Owing to high structural integrity of pristine graphene and effective edge oxidation, the obtained edge-oxidized graphene exhibited excellent dispersion stability and satisfactory electrical conductivity (i.e. ≥240 S cm-1). Moreover, the oxidation degree of pristine graphene can be well controlled by adjusting treatment time. The obtained edge-oxidized graphene is expected to find a variety of applications in many fields of anti-static films, energy storage materials, flexible sensors and high-performance nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA