Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Plant Biol ; 23(1): 20, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627574

RESUMEN

Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.


Asunto(s)
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Zinc/metabolismo , Transducción de Señal
2.
Environ Res ; 203: 111792, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333009

RESUMEN

High-quality products in sustainable agriculture require both limited health risks and sufficient dietary nutrients. Phosphorus (P) as a finite and non-renewable resource is widely used in agriculture, usually exerting influence on the accumulation of heavy metals (HMs) in soil and crops. The present research explores, for the first time, the combined effects of long-term P fertilizer and repeated zinc (Zn) application in field on the human health risks and nutritional yield regarding trace elements in maize grain. A field experiment was conducted using maize with six P application rates (0, 12.5, 25, 50, 100, and 200 kg P ha-1) and two Zn application rates (0 and 11.4 kg Zn ha-1). The results showed that the concentrations of Zn, copper (Cu), and lead (Pb) in the maize grain were significantly affected by P application and can be further affected by Zn application. The concentrations of chromium (Cr) and arsenic (As) showed opposite tendency as affected by P fertilizer rates while did not affected by additional Zn application. Zn application decreased the cadmium (Cd) concentration at high P levels and Pb concentration at low P levels, particularly. No HMs contamination or direct health risk was found in maize grain after receiving long-term P and repeated Zn fertilizer. The threshold hazard quotient of an individual and all investigated HMs in this study were acceptable for human digestion of maize grain. While the carcinogenic risk of Cr was non-negligible in case of maize was taken as one of daily staple food for local residents. Combination use of P (25 kg ha-1) and Zn fertilizer on maize enhanced its nutritional supply ability regarding Zn and Cu, and simultaneously mitigated potential human health risks associated with Cd and Pb.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Agricultura , China , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Metales Pesados/toxicidad , Fósforo , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Zea mays
3.
J Sci Food Agric ; 92(12): 2552-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22450931

RESUMEN

BACKGROUND: Zinc (Zn) deficiency, a major problem limiting crop production worldwide, is common on calcareous soils of China. Using such a Zn-deficient soil supplied adequately with plant mineral nutrients, with or without Zn, 30 Chinese maize genotypes were grown for 30 days in a greenhouse pot experiment and assessed for Zn efficiency (ZE), measured as relative biomass under Zn-limiting compared with non-limiting conditions. RESULTS: Substantial variation in tolerance to low Zn nutritional status was observed within the maize genotypes. Tolerant genotypes did not show Zn deficiency symptoms at the studied early seedling growth, and there was a well-defined relationship between shoot dry matter and the ZE trait. ZE values ranged on average from 45 to 100% for shoot dry weight. Under low available soil Zn conditions, shoot and root dry weights, shoot Zn concentration and content, leaf superoxide dismutase (SOD) activity, leaf area and plant height were all correlated with ZE. Shoot Zn and phosphorus (P) concentrations were negatively correlated. CONCLUSION: Three genotypes (L55 × 178, L114 × 178 and Zhongnong 99) were identified as highly Zn-efficient and three (L53 × 178, L105 × 178 and L99 × 178) as very low in ZE. This selection allows further work to evaluate ZE based on grain yield and grain Zn concentration, including field experiments likely to benefit farmers producing maize on Chinese soils low in available Zn.


Asunto(s)
Adaptación Biológica/genética , Biomasa , Genotipo , Estructuras de las Plantas/crecimiento & desarrollo , Suelo/química , Zea mays/genética , Zinc/metabolismo , China , Fertilizantes , Fósforo/metabolismo , Estructuras de las Plantas/metabolismo , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zinc/deficiencia
4.
Front Nutr ; 8: 697817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262927

RESUMEN

Zinc (Zn) malnutrition is a common health problem, especially in developing countries. The human health and economic benefits of the replacement of conventional flour with Zn-biofortified wheat flour in rural household diets were assessed. One hundred forty-five wheat flour samples were collected from rural households in Quzhou County. Then, field experiments were conducted on wheat at two Zn levels (0 and 0.4% ZnSO4 · 7H2O foliar application) under 16 diverse agricultural practices in Quzhou County. Foliar Zn application significantly increased the Zn concentration and bioavailability in wheat grain and flour. If rural households consumed Zn-biofortified flour instead of self-cultivated flour or flour purchased from supermarkets, 257-769 or 280-838, 0.46-1.36 million or 0.50-1.49 million disability-adjusted life years (DALYs) lost, respectively, could be saved in Quzhou County and China. Amounts of 2.3-12.0 million and 5.5-22.6 billion RMB could be obtained via Zn-biofortified flour in Quzhou County and China, respectively. The current study indicates that Zn-biofortified flour via foliar Zn application is a win-win strategy to maintain the yield and combat human Zn deficiency in rural households in China. More health and economic benefits could be obtained in rural household dependent on wheat flour purchased from supermarkets than in those dependent on self-cultivated wheat flour.

5.
Front Plant Sci ; 11: 188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180784

RESUMEN

Improving the development of inferior grains is important for increasing maize yield under high-density conditions. However, the effect of micronutrients, especially zinc (Zn), on the development of inferior grains and maize yield under field conditions has not been evaluated to date. A field experiment with six Zn application rates (0, 2.3, 5.7, 11.4, 22.7, and 34.1 kg/ha) was conducted to investigate the effects of soil application of Zn fertilizer on the development of inferior grains. Pollen viability was measured at the tasseling stage. The maize spike was divided into apical (inferior grain), middle, and basal sections for further measurement at harvest. Results showed that soil application of Zn fertilizer increased maize yield by 4.2-16.7% due to increased kernel number and weight in the apical, but not in the middle and basal sections. Zn application also significantly increased pollen viability at the tasseling stage. The critical Zn concentrations in shoots at the tasseling stage for obtaining high pollen viability and high kernel numbers of inferior grains were 31.2 and 35.6 mg/kg, respectively. Zn application also increased the 1,000-kernel weight of inferior grain due to high biomass accumulation. Furthermore, the grain Zn concentration of inferior grain with Zn application increased by 24.3-74.9% compared with no Zn application. Thus, soil application of Zn fertilizer successfully increased grain yield of maize by improving pollen viability, kernel number, and kernel weight of inferior grains (apical section), also contributing to grain Zn biofortification.

6.
Sci Total Environ ; 737: 140245, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783848

RESUMEN

Zinc (Zn) fertilizer application can certainly improve the production and nutritional quality of cereal crops. However, Zn accumulation in the soil may lead to some deleterious environmental impacts in agroecosystems. The effects of long-term Zn application on soil microbial properties remain unclear, but it is imperative to understand such effects. In this study, we collected soil samples from a nine-year field experiment in a wheat-maize system that continuously received Zn applied at various rates (0, 2.3, 5.7, 11.4, 22.7 and 34.1 kg ha-1) to evaluate the soil enzymes, microbial biomass and microbial community structure. The results showed that Zn application at the rate of 5.7 kg ha-1 significantly increased the activities of urease, invertase, alkaline phosphatase and catalase in the soil, while the rate of 34.1 kg ha-1 significantly decreased the evaluated enzyme activities. The microbial biomass carbon (C) and nitrogen (N) were not affected by Zn application rates, although an increase in the microbial biomass C was observed in the 11.4 kg ha-1 treatment. Moreover, the alpha diversity of the bacterial and fungal communities did not vary among the nil Zn, optimal Zn (5.7 kg ha-1) and excess Zn (34.1 kg ha-1) treatments. However, the bacterial communities in the soil receiving the optimal and excess Zn application rates were slightly changed. Compared to the nil Zn treatment, the other Zn application rates increased the relative abundances of the Rhodospirillales, Gaiellales and Frankiales orders and decreased the abundance of the Latescibacteria phylum. The redundancy analysis further indicated that the soil bacterial community composition significantly correlated with the concentrations of soil DTPA-Zn and total Zn. These results highlight the importance of optimal Zn application in achieving high production and high grain quality while concurrently promoting soil microbial activity, improving the bacterial community and further maintaining the sustainability of the agroecological environment.


Asunto(s)
Microbiota , Suelo , Biomasa , Fertilizantes , Nitrógeno/análisis , Microbiología del Suelo , Zinc
7.
Front Plant Sci ; 11: 606472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343606

RESUMEN

Negative effects of high phosphorus (P) application on zinc (Zn) nutrition have been observed in many crops. This study investigated the Zn responses of three typical crops to varied P and Zn applications. A pot experiment was conducted using two mycorrhizal crops (maize and soybean) and one non-mycorrhizal crop (oilseed rape) under three levels of P, two levels of Zn, and two levels of benomyl. Results showed that P application significantly decreased shoot and root Zn concentrations, Zn uptake, and Zn acquisition efficiency (ZnAE) of the three crops irrespective of Zn rate, and that these reductions were greater for maize and soybean than for oilseed rape. Zn application alleviated the P inhibition of Zn uptake in the three crops. The arbuscular mycorrhizal fungi (AMF) colonization of maize and soybean contributed most to the negative effects of increasing P application on Zn uptake, explaining 79-89 and 64-69% of the effect, respectively. For oilseed rape, root dry weight and root Zn concentration explained 90% of the decrease in Zn uptake caused by P application. These results suggest that there is another pathway in addition to the mycorrhizal pathway regulating Zn uptake under mediation by P supply.

8.
Environ Pollut ; 262: 114348, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32182536

RESUMEN

Phosphorus (P) fertilizer is widely used to increase wheat yield. However, it remains unclear whether prolonged intake of wheat grain that received long-term P application may promote human health risks by influencing heavy metal(loid)s (HMs) accumulation. A 10-year field experiment was conducted to evaluate the effects of continuous P application (0, 25, 50, 100, 200, and 400 kg P ha-1) on human health risks of HMs, including zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), and chromium (Cr), by ingesting wheat grain. The results showed that P application facilitated Zn, Pb, Cd, and As accumulation in the topsoil. The Zn, Cu, Pb, and Ni concentrations in grain were decreased, while Cd and As were increased by P application. All HMs concentrations of both soil and grain were in the ranges of corresponding safety thresholds at different P levels. The accumulation abilities of Zn, Cu, Pb, and Ni from soil and straw to grain were suppressed by P addition while of As was enhanced. There was no significant difference in the hazard index (HI) of the investigated HMs in all treatments except 25 kg ha-1. The threshold cancer risk (TCR) associated with As and Cd was enhanced, while that of Pb was alleviated as P application increased. Behaviors of Cr from soil to wheat and to humans were not affected by P application. Phosphorus application at a rate of 50 kg ha-1 decreased total non-cancer and cancer risks by 15% and 21%, respectively, for both children and adults, compared to the highest value. In conclusion, long-term optimal application of 50 kg P ha-1 to wheat did not result in additional adverse effects on the total non-carcinogenic or carcinogenic risk caused by the studied HMs to humans through the ingestion of wheat grain.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adulto , Niño , China , Monitoreo del Ambiente , Fertilizantes , Humanos , Fósforo , Medición de Riesgo , Suelo , Triticum
9.
Environ Pollut ; 266(Pt 2): 115114, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32634695

RESUMEN

Micronutrient deficiencies are prevalent health problems worldwide. The maintenance of adequate concentrations of micronutrients in maize grain is crucial for human health. We investigated the overall status and geospatial variation of micronutrients in Chinese maize grains and identified their key drivers. A field survey was conducted in four major maize production areas of China in 2017 with 980 pairs of soil and grain samples collected from famers' fields. At a national scale, grain zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) concentrations varied substantially, with average values of 17.4, 17.3, 4.9, and 1.5 mg kg-1, respectively, suggesting a solid gap between grain Zn and Fe concentrations and the biofortification target values. Significant regional difference in the concentrations of Zn, Mn and Cu, but not Fe, were observed in grain, with much higher levels in Southwest China. The nutritional yields of Zn, Fe and Cu were lower than the energy and Mn yields, indicating an unbalanced output between energy and micronutrients in current maize production system. Grain Zn, Fe, Mn and Cu correlated negatively with maize yield in most test regions. Increased nitrogen (N) rate positively affected grain Zn and Cu, while increased phosphorus (P) rate negatively affects grain Zn and Fe. Apart from Fe, available Zn, Mn and Cu in soil exerted significant positive effects on grain Zn, Mn and Cu concentrations, respectively. Decrease in soil pH and increase in the organic matter content may increase the accumulation of Fe and Mn in grain. Grain Zn and Cu concentrations increased as available soil P decreased. Of the factors considered in this study, grain yield, N and P rates, soil pH and organic matter were the main factors that affect grain micronutrient status and should be more extensively considered in the production and nutritional quality of maize grain.


Asunto(s)
Oligoelementos , Zea mays , China , Grano Comestible , Humanos , Micronutrientes , Suelo
10.
Environ Pollut ; 257: 113581, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31753641

RESUMEN

Soil application of Zn fertilizer is an effective approach to improve yield and Zn accumulation in wheat grain. However, it remains unclear whether repeated Zn application can result in high accumulation of heavy metals (HMs) in soils and grains and thus represents a potential risk for human consumption. This study aimed to evaluate the health risk assessment of HMs in a wheat production system which had continuously received 8 years of Zn application at varying rates (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg Zn ha-1). The results showed that Zn application significantly increased the soil total Zn concentration without affecting concentrations of As, Pb, Cd, Cu and Cr. Across Zn rates, Zn application increased grain concentrations of Zn, Pb and Cd by 75%, 51% and 14%, respectively, and reduced grain As concentration by 14%. The human health risk assessment revealed that the threshold hazard quotients for the individual HM were below 1, independent of Zn rates. The hazard index (HI) values at Zn rates of 11.4, 22.7 and 34.1 kg Zn ha-1 were significantly greater than that at null Zn treatment. Furthermore, exposures to As, Cu and Zn accounted for 97% of HI at all Zn rates. Analysis of the threshold cancer risk with Pb and As showed that ingestion of wheat grain even from highest Zn application rate wouldn't bring the lifetime carcinogenic risk. In contrast, long-term Zn application significantly reduced the carcinogenic risk of As by 9.7-26.5%. In conclusion, repeated soil applications of Zn at optimal rate (5.7 kg Zn ha-1) didn't cause health risk for Zn, Cu, Cd, Pb, Cr, and As, while improving productivity and grain Zn concentration of wheat to meet human recruitment. Our study highlights the importance of appropriate Zn fertilizer management in improving grain quality while reducing HMs risks from human consumption.


Asunto(s)
Exposición Dietética , Monitoreo del Ambiente , Fertilizantes , Metales Pesados/análisis , Contaminantes del Suelo , Triticum/química , Zinc , Cadmio , China , Humanos , Plomo , Medición de Riesgo , Suelo
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(4): 1104-7, 2009 Apr.
Artículo en Zh | MEDLINE | ID: mdl-19626912

RESUMEN

Deficiency of micronutrients, especially iron and zinc, has been a serious malnutrition problem worldwide in human health. Increasing Fe and Zn concentrations in grains by means of plant breeding is a sustainable, effective and important way to improve human mineral nutrition and health. However, little information on grain Fe and Zn concentrations in Chinese wheat genotypes is available. Therefore, to determine the nutrients status especially these of micronutrients in wheat grain is necessary and very useful. Two hundred sixty two genotypes were selected from the wheat mini-core collections, which contained 23090 wheat genotypes in China and represented 72.2% of total genetic variation. All 262 genotypes were grown in soils of similar geographical and climate location in order to minimize the environmental effect. After harvesting, the grains were washed with deionized water and dried (around 70 degrees C), then digested in HNO3 solution using a microwave accelerating reaction system (MARS). Nutrient concentrations in stock solution were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Remarkable genetic variations among grain nutrient concentrations (Fe, Mn, Cu, Zn, Mg, Ca, K and P ) in the tested genotypes were detected. The concentrations of Fe, Zn, Mn, Cu, Ca, Mg, K and P in wheat grain were in the ranges of 34.2-61.2, 26.3-76.0, 20.9-56.7, 3.4-9.8, 290-976, 1129-2210 mg x kg(-1); 0.34%-0.85% and 0.296%-0.580%, respectively. The corresponding average values were 45.1, 50.2, 37.9, 6.5, 515, 1772 mg x kg(-1), 0.55% and 0.451%, respectively. Significant positive correlations between micronutrients (Fe, Mn, Zn, and Cu) in wheat grains were detected, and the correlation coefficients were 0.395** (Fe and Mn), 0.424** (Fe and Zn), 0.574** (Fe and Cu), and 0.474** (Mn and Cu), respectively. However, no significant difference was found in grain nutrient concentrations between spring-wheat and winter-wheat genotypes. This study provides valuable and important information for breeding wheat genotypes which are enriched with minerals in grains, especially Fe and Zn


Asunto(s)
Extractos Vegetales/análisis , Espectrofotometría Atómica/métodos , Oligoelementos/análisis , Triticum/química , China , Valor Nutritivo
12.
Front Plant Sci ; 10: 426, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057568

RESUMEN

Effect of zinc (Zn) application to soil on root growth and Zn uptake and translocation in winter wheat are poorly understood. This study evaluated the effect of soil Zn fertilization (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg of Zn ha-1) on root growth and distribution, crop Zn uptake, root-to-shoot translocation of Zn, and remobilization of Zn from shoot to grain. Results of this study revealed that Zn application ≤11.4 kg ha-1 significantly increased root dry weight, root length density, and root surface area within 0-30 cm soil depth and higher rates of Zn application caused slight decreases in these root parameters. Shoot biomass and shoot Zn accumulation increased as Zn application rate increased mainly because of improved matching of root growth and enhanced availability of Zn in the topsoil layer. Post-anthesis Zn uptake by shoot increased and translocation of Zn from root to shoot decreased as rate of Zn application increased. The degree to which Zn accumulation in grain resulted from pre-anthesis remobilization vs. post-anthesis shoot uptake depended on Zn availability in soil; post-anthesis shoot uptake dominated at DTPA-Zn concentrations >7.15 mg kg-1, and pre-anthesis remobilization dominated at lower soil Zn levels. In conclusion, Zn uptake, translocation and remobilization to grain were affected by root growth and its matching with the availability of soil Zn. The results suggest that soils similar to the study soil should be fertilized to 30 cm depth with about 11.4 kg ha-1 Zn in order to obtain high yield and grain Zn concentration of wheat.

13.
Front Plant Sci ; 10: 1203, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632429

RESUMEN

Nitrogen (N) supply could improve the grain yield of maize, which is of great importance to provide calories and nutrients in the diets of both humans and animals. Field experiments were conducted in 2009 and 2010 to investigate dynamic zinc (Zn) accumulation and the pre-silking and post-silking Zn uptake and their contributions to grain Zn accumulation of maize with different N supply under field conditions. Results showed that only 1.2% to 39.4% of grain Zn accumulation derived from pre-silking Zn uptake, with Zn remobilization being negatively affected by increasing N supply. However, post-silking Zn uptake (0.8-2.3 mg plant-1) and its substantial contribution to grain Zn accumulation (60.6%-98.8%) were progressively enhanced with the increasing N supply. Furthermore, grain Zn concentration was positively associated with grain N concentration (r = 0.752***), post-silking N uptake (r = 0.695***), and post-silking Zn uptake (r = 738***). A significant positive relationship was also found between post-silking uptake of N and Zn (r = 0.775***). These results suggest that N nutrition is a critical factor for shoot Zn uptake and its allocation to maize grain. Dry weight, and N and Zn concentration of grain and straw were significantly enhanced with the increasing N from "no N" to "optimal N" supply (150 kg N ha-1 in 2009 and 105 kg N ha-1 in 2010), but further increasing N supply (250 kg N ha-1) generally resulted in a non-significant increase in both cropping seasons. During the grain development, N supply also generally tended to improve grain N and Zn concentrations, but decrease phosphorus (P) concentration and the molar ratio of P to Zn compared with null N application. These results suggest that grain Zn accumulation mainly originates from post-silking Zn uptake. Applying N at optimal rates ensures better shoot Zn nutrition and contributes to post-silking Zn uptake, maintaining higher grain Zn availability by decreasing the molar ratio of P to Zn, and resulting in benefits to human nutrition.

14.
Sci Rep ; 9(1): 16580, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719561

RESUMEN

Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha-1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg-1 tiller P concentration associated with 15 mg kg-1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg-1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Asunto(s)
Fertilizantes , Fósforo/metabolismo , Fotosíntesis , Brotes de la Planta/fisiología , Estaciones del Año , Suelo/química , Triticum/fisiología , Brotes de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Agua
15.
J Plant Nutr Soil Sci (1999) ; 182: 791-804, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32968357

RESUMEN

Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high-Zn seeds were not studied under diverse agro-climatic field conditions. This study investigated effects of low-Zn and high- Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat (Tritcum aestivum L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low-Zn seeds and no soil Zn fertilization (control treatment), (2) low-Zn seeds + soil Zn fertilization, and (3) Zn-biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc-biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn-biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn-biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Znbiofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high-Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high-Zn grains are a by-product of Zn biofortification, use of Zn-enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost-effective manner.

16.
Front Plant Sci ; 9: 1614, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459796

RESUMEN

Phosphorus (P) efficiency includes both P acquisition efficiency (PAE) and internal P utilization efficiency (PUE). Despite substantial research, genotypic variation in PAE and PUE remains incompletely understood in the field. A 2-year field study was conducted to compare PAE and PUE and related morphological, physiological, and molecular root traits of two winter wheat cultivars (Triticum aestivum L. cv. SJZ8 and KN92) in response to six P application rates in a P-deficient calcareous soil. Both cultivars showed similar growth and yield potential at each P supply level, reaching optimal growth at the same P application rate of about 100 kg P ha-1. However, the two cultivars differed in how they achieved yield and P efficiency. As P supply increased for both cultivars, root dry weight (RDW), root length density, and expression of the phosphate transporter gene TaPHT1.2 in roots initially increased and then stabilized, but arbuscular mycorrhizal fungal colonization, rhizosphere acid phosphatase activity, expressions of the P-starvation marker gene TaIPS1.1 and the purple acid phosphatase gene TaPAP16 in roots initially decreased and then stabilized. To enhance P acquisition when the P supply was deficient, KN92 modified the morphology of its roots, while SJZ8 increased the physiological activities in its roots. With an adequate P supply, high expression of TaPHT1.2 in roots might account for efficient P uptake for both cultivars, especially for KN92. Although P uptake per RDW was similar for both cultivars at anthesis, PAE was higher for KN92 than SJZ8 in terms of total P uptake in aboveground parts, whereas shoot and grain PUE were higher in SJZ8 than in KN92, mainly during the reproductive growth stage. These results indicate that P efficiency is under genotypic control at all P supply levels tested in both wheat cultivars, and that the two cultivars depend on different root strategies for P acquisition and utilization in response to changes in the P supply.

17.
Sci Rep ; 7(1): 7016, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765540

RESUMEN

Increasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.5 mg kg-1, showing a solid gap to the biofortification target for human health (40 mg kg-1). Through a group of field experiments, we found that the low grain Zn was not closely linked to historical replacements of varieties during the Green Revolution, but greatly aggravated by phosphorus (P) overuse or insufficient nitrogen (N) application. We also conducted a total of 320-pair plots field experiments and found an average increase of 10.5 mg kg-1 by foliar Zn application. We conclude that an integrated strategy, including not only Zn-responsive genotypes, but of a similar importance, Zn application and field N and P management, are required to harvest more grain Zn and meanwhile ensure better yield in wheat-dominant areas.


Asunto(s)
Agricultura/métodos , Grano Comestible/química , Triticum/química , Triticum/crecimiento & desarrollo , Zinc/análisis , Fertilizantes , Genotipo , Humanos , Nitrógeno/metabolismo , Fósforo/metabolismo , Triticum/genética , Triticum/metabolismo
18.
J Agric Food Chem ; 62(20): 4738-46, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24806959

RESUMEN

Increasing nitrogen supply can increase Fe and Zn concentrations in wheat grain, but the underlying mechanisms remain unclear. Size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry was used to determine Fe and Zn speciation in the soluble extracts of grain pearling fractions of two wheat cultivars grown at two N rates (100 and 350 kg of N ha(-1)). Increasing N supply increased the concentrations of total Fe and Zn and the portions of Fe and Zn unextractable with a Tris-HCl buffer and decreased the concentrations of Tris-HCl-extractable (soluble) Fe and Zn. Within the soluble fraction, Fe and Zn bound to low molecular weight compounds, likely to be Fe-nicotianamine and Fe-deoxymugineic acid or Zn-nicotianamine, were decreased by 5-12% and 4-37%, respectively, by the high N treatment, whereas Fe and Zn bound to soluble high molecular weight or soluble phytate fractions were less affected. The positive effect of N on grain Fe and Zn concentrations was attributed to an increased sink in the grain, probably in the form of water-insoluble proteins.


Asunto(s)
Hierro/análisis , Nitrógeno/metabolismo , Triticum/química , Zinc/análisis , Hierro/metabolismo , Nitrógeno/análisis , Semillas/química , Semillas/metabolismo , Espectrofotometría Atómica , Triticum/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA