RESUMEN
Necroptosis is a form of regulated necrosis involved in various pathological diseases. The process of necroptosis is controlled by receptor-interacting kinase 1 (RIPK1), RIPK3, and pseudokinase mixed lineage kinase domain-like protein (MLKL), and pharmacological inhibition of these kinases has been shown to have therapeutic potentials in a variety of diseases. In this study, using drug repurposing strategy combined with high-throughput screening (HTS), we discovered that AZD4547, a previously reported FGFR inhibitor, is able to interfere with necroptosis through direct targeting of RIPK1 kinase. In both human and mouse cell models, AZD4547 blocked RIPK1-dependent necroptosis. In addition, AZD4547 rescued animals from TNF-induced lethal shock and inflammatory responses. Together, our study demonstrates that AZD4547 is a potent and selective inhibitor of RIPK1 with therapeutic potential for the treatment of inflammatory disorders that involve necroptosis.
Asunto(s)
Necroptosis , Proteínas Quinasas , Ratones , Animales , Humanos , Proteínas Quinasas/metabolismo , Reposicionamiento de Medicamentos , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismoRESUMEN
Oncogene HER2 is amplified in 20%-25% of human breast cancers and 6.1%-23.0% of gastric cancers, and HER2-directed therapy significantly improves the outcome for patients with HER2-positive cancers. However, drug resistance is still a clinical challenge due to primary or acquired mutations and drug-induced negative regulatory feedback. In this study, we discovered a potent irreversible HER2 kinase inhibitor, CHMFL-26, which covalently targeted cysteine 805 of HER2 and effectively overcame the drug resistance caused by HER2 V777L, HER2 L755S, HER2 exon 20 insertions, and p95-HER2 truncation mutations. CHMFL-26 displayed potent antiproliferation efficacy against HER2-amplified and mutant cells through constant HER2-mediated signaling pathway inhibition and apoptosis induction. In addition, CHMFL-26 suppressed tumor growth in a dose-dependent manner in xenograft mouse models. Together, these results suggest that CHMFL-26 may be a potential novel anti-HER2 agent for overcoming drug resistance in HER2-positive cancer therapy.
Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisteína , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Recent research has shown that graphene as a novel "green" antibacterial material possess excellent antibacterial properties with no risk of bacterial resistance for daily life due to its physical damage-based bactericidal mechanism. Therefore, an increasing amount of research has been focused towards evaluating the antibacterial effects of graphene and graphene-based hybrid materials. In this chapter, we reviewed the antibacterial activity and mechanism of graphene-based nanomaterials and highlighted the importance of size, morphology, and composites in the application of antibacterial materials development. Finally, we made a summary and outlook on this research field.
Asunto(s)
Grafito , Nanoestructuras , Antibacterianos/farmacología , Grafito/farmacologíaRESUMEN
Acute myeloid leukemia (AML) is reported to be vulnerable to transcription disruption due to transcriptional addiction. Cyclin-dependent kinase 9 (CDK9), which regulates transcriptional elongation, has attracted extensive attention as a drug target. Although several inhibitors, such as alvocidib and dinaciclib, have shown potent therapeutic effects in clinical trials on AML, the lack of high selectivity for CDK9 and other CDKs has limited their optimal clinical efficacy. Therefore, developing highly selective CDK9 inhibitors is still imperative for the efficacy and safety profile in treating AML. Here, we report a novel highly selective CDK9 inhibitor, JSH-009, which exhibited high potency against CDK9 and displayed great selectivity over 468 kinases/mutants. It also demonstrates impressive in vitro and in vivo antileukemic efficacy in preclinical models of AML, which makes JSH-009 a useful pharmacological tool for elucidating CDK9-mediated transcription and a novel therapeutic candidate for AML.
Asunto(s)
Antineoplásicos/uso terapéutico , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Ratones Endogámicos NOD , Ratones SCID , Inhibidores de Proteínas Quinasas/farmacología , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacosRESUMEN
Nanotechnology has demonstrated great promise for the development of more effective and safer cancer therapies. We recently developed a highly selective inhibitor of BCR-ABL fusion tyrosine kinase for chronic myeloid leukemia (CML). However, the poor drug-like properties were hurdles to its further clinical development. Herein, we re-investigate it by conjugating an amphiphilic polymer and self-assembling into a nanoparticle (NP) with a high loading (~10.3%). The formulation greatly improved its solubility and drastically extended its circulation half-life from ~5.3 to ~117â¯h (>20-fold). In the 150â¯days long-term engraftment model experiment, long intravenous dosing intervals of the NPs (every 4 or 8â¯days) exhibited much better survival and negligible toxicities as compared to daily oral administration of the inhibitor. Moreover, the NPs showed excellent inhibition of tumor growth in the subcutaneous xenograft model. All results suggest that the ultra-long circulating pro-drug NP may provide an effective and safe therapeutic strategy for BCR-ABL-positive CML.
Asunto(s)
Genes abl/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Nanopartículas/química , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Genes abl/genética , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
The gene encoding cathepsin D of silkworm, Bombyx mori (BmCatD) is specifically expressed in the larval fat body and pupal gut, and plays an important role in the programmed cell death during metamorphosis. To identify element involved in this transcription-dependent spatial restriction, truncation and deletion of the 5' terminal from the BmCatD promoter were conducted in vivo. The recombinant AcMNPV vector (Autographa californica multiple nucleopolyhedrovirus) with a dual-luciferase quantitative assay system was used as the transfer. A 289 bp DNA sequence (-1,214 to -925) upstream of the transcriptional start site is found to be responsible for promoting tissue-specific transcription. Further analysis of a series of deletion within the 289 bp region of overlapping deletion showed that a 33 bp region (-1,071 to -1,038) sequence suppresses the ectopic expression of the BmCatD promoter. These results suggest that this 33 bp region could function as a promoter element in the tissue-specificity expression.
Asunto(s)
Bombyx/genética , Catepsina D/genética , Regiones Promotoras Genéticas , Animales , Catepsina D/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Especificidad de Órganos/genéticaRESUMEN
PI3Kγ and PI3Kδ plays critical roles in exerting immunosuppression by targeting regulatory T cells and myeloid cells. Dual inhibition of PI3Kγ and PI3Kδ has emerged as a novel therapeutic strategy for cancer immunotherapy. We herein report a series of pyrazolopyridine derivatives with distinct scaffolds as potent and selective dual inhibitors of PI3Kγ and PI3Kδ. Among them, 20e (IHMT-PI3K-315) displays an IC50 value of 4.0 and 9.1 nM against PI3Kγ and PI3Kδ respectively in biochemical assays. Meanwhile, it potently inhibits PI3Kγ and PI3Kδ-mediated phosphorylation of AKT S473 with EC50 values of 0.028 and 0.013 µM in cellular assays. In addition, 20e exhibits a favorable selectivity profile in protein kinases at 1 µM. In bone marrow-derived macrophages (BMDM), 20e can repolarize the M2 phenotype to the M1 phenotype. In vivo, 20e demonstrates acceptable pharmacokinetic properties and suppresses tumor growth in a MC38 syngeneic mouse model.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ib , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirazoles , Piridinas , Animales , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Piridinas/farmacocinética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacocinética , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Pirazoles/farmacocinética , Humanos , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Ratones , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Descubrimiento de Drogas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Simulación del Acoplamiento MolecularRESUMEN
Abnormally activated CDK9 participates in the super-enhancer mediated transcription of short-lived proteins required for cancer cell survival. Targeting CDK9 has shown potent anti-tumor activity in clinical trials among different cancers. However, the study and knowledge on drug resistance to CDK9 inhibitors are very limited. In this study, we established an AML cell line with acquired resistance to a highly selective CDK9 inhibitor BAY1251152. Through genomic sequencing, we identified in the kinase domain of CDK9 a mutation L156F, which is also a coding SNP in the CDK9 gene. By knocking in L156F into cancer cells using CRISPR/Cas9, we found that single CDK9 L156F could drive the resistance to CDK9 inhibitors, not only ATP competitive inhibitor but also PROTAC degrader. Mechanistically, CDK9 L156F disrupts the binding with inhibitors due to steric hindrance, further, the mutation affects the thermal stability and catalytic activity of CDK9 protein. To overcome the drug resistance mediated by the CDK9-L156F mutation, we discovered a compound, IHMT-CDK9-36 which showed potent inhibition activity both for CDK9 WT and L156F mutant. Together, we report a novel resistance mechanism for CDK9 inhibitors and provide a novel chemical scaffold for the future development of CDK9 inhibitors.
RESUMEN
Phosphoinositol 3-kinases (PI3Ks) γ and δ are primarily expressed in leukocytes and play crucial roles in regulation of the immune system. Dual inhibition of PI3Kγ/δ has emerged as an effective approach to regulate the tumor microenvironment. Here, we report the exploration of structure-activity relationship optimization which led to the discovery of a potent PI3Kγ/δ dual inhibitor 15u (IHMT-PI3K-455). 15u exhibits strong potency in biochemical and cellular assays and it repolarizes M2 phenotype toward M1 phenotype in THP-1 and BMDM macrophages. In addition, it shows suitable in vivo properties as demonstrated through pharmacokinetic studies in rats and pharmacodynamics properties in a MC38 xenograft model.
Asunto(s)
Leucocitos , Pirimidinas , Animales , Humanos , Ratas , Modelos Animales de Enfermedad , Macrófagos , Fenotipo , Pirimidinas/farmacologíaRESUMEN
EZH2 is overexpressed in multiple types of cancer and high expression level of EZH2 correlates with poor prognosis. Besides the regulation of H3K27 trimethylation, EZH2 itself regulates its downstream proteins in a PRC2- and methylation-independent way. Starting from an approved EZH2 inhibitor EPZ-6438, we used covalent drug design and medicinal chemistry approaches to discover a novel covalent EZH2 degrader 38, which forms a covalent bond with EZH2 Cys663 and showed strong biochemical activities against EZH2 WT and mutants. Compound 38 exhibited potent antiproliferation effects against both B-cell lymphoma and TNBC cell lines by reducing the levels of H3K27me3 and EZH2. The mass spectrometry, washout and competition experiments confirmed the covalent binding of 38 to EZH2. This study demonstrates that covalent EZH2 degraders could provide an opportunity for the development of promising new drug candidates.
Asunto(s)
Histonas , Linfoma de Células B , Humanos , Histonas/metabolismo , Complejo Represivo Polycomb 2 , Proteína Potenciadora del Homólogo Zeste 2/metabolismoRESUMEN
Enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of PRC2 complex, plays an important role in tumor development and progression through its catalytic and noncatalytic activities. Overexpression or gain-of-function mutations of EZH2 have been significantly associated with tumor cell proliferation of triple-negative breast cancer (TNBC) and diffuse large B-cell lymphoma (DLBCL). As a result, it has gained interest as a potential therapeutic target. The currently available EZH2 inhibitors, such as EPZ6438 and GSK126, are of benefit for clinical using or reached clinical trials. However, certain cancers are resistant to these enzymatic inhibitors due to its noncatalytic or transcriptional activity through modulating nonhistone proteins. Thus, it may be more effective to synergistically degrade EZH2 in addition to enzymatic inhibition. Here, through a rational design and chemical screening, we discovered a new irreversible EZH2 inhibitor, IHMT-337, which covalently bounds to and degrades EZH2 via the E3 ligase CHIP-mediated ubiquitination pathway. Moreover, we revealed that IHMT-337 affects cell cycle progression in TNBC cells through targeting transcriptional regulating of CDK4, a novel PRC2 complex- and enzymatic activity-independent function of EZH2. More significantly, our compound inhibits both DLBCL and TNBC cell proliferation in different preclinical models in vitro and in vivo. Taken together, our findings demonstrate that in addition to enzymatic inhibition, destroying of EZH2 by IHMT-337 could be a promising therapeutic strategy for TNBC and other malignancies that are independent of EZH2 enzymatic activity.
Asunto(s)
Linfoma de Células B Grandes Difuso , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos , Proliferación Celular/genética , Linfoma de Células B Grandes Difuso/genética , Quinasa 4 Dependiente de la CiclinaRESUMEN
Insulin-producing pancreatic ß cell death is the fundamental cause of type 1 diabetes (T1D) and a contributing factor to type 2 diabetes (T2D). Moreover, metabolic disorder is another hallmark of T2D. Mammalian sterile 20-like kinase 1 (MST1) contributes to the progression of diabetes mellitus through apoptosis induction and acceleration of pancreatic ß cell dysfunction. AMP-activated protein kinase (AMPK) is an energy sensing kinase and its activation has been suggested as a treatment option for metabolic diseases. Thus, pharmacological inhibition of MST1 and activation of AMPK simultaneously represents a promising approach for diabetes therapy. Here, we discovered a novel selective MST1 kinase inhibitor IHMT-MST1-39, which exhibits anti-apoptosis efficacy and improves the survival of pancreatic ß cells under diabetogenic conditions, as well as primary pancreatic islets in an ex vivo disease model. Mechanistically, IHMT-MST1-39 activated AMPK signaling pathway in hepatocytes in vitro, combination of IHMT-MST1-39 and metformin synergistically prevented hyperglycemia and significantly ameliorated glucose tolerance and insulin resistance in diabetic mice. Taken together, IHMT-MST1-39 is a promising anti-diabetic candidate as a single agent or in combination therapy for both T1D and T2D.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismoRESUMEN
Although rat sarcoma viral oncogene homolog (RAS) mutations occur in about 30% of solid tumors, targeting RAS mutations other than KRAS-G12C is still challenging. As an alternative approach, developing inhibitors targeting RAF, the downstream effector of RAS signaling, is currently one of the main strategies for cancer therapy. Selective v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-V600E inhibitors Vemurafenib, Encorafenib, and Dabrafenib have been approved by FDA and received remarkable clinical responses, but these drugs are ineffective against RAS mutant tumors due to limited inhibition on dimerized RAF. In this study, we developed a highly potent pan-RAF inhibitor, IHMT-RAF-128, which exhibited similarly high efficacies in inhibiting both partners of the RAF dimer, and showed potent anti-tumor efficacy against a variety of cancer cells harboring either RAF or RAS mutations, especially Adagrasib and Sotorasib (AMG510) resistant-KRAS-G12C secondary mutations, such as KRAS-G12C-Y96C and KRAS-G12C-H95Q. In addition, IHMT-RAF-128 showed excellent pharmacokinetic profile (PK), and the bioavailability in mice and rats were 63.9%, and 144.1%, respectively. Furthermore, IHMT-RAF-128 exhibited potent anti-tumor efficacy on xenograft mouse tumor models in a dose-dependent manner without any obvious toxicities. Together, these results support further investigation of IHMT-RAF-128 as a potential clinical drug candidate for the treatment of cancer patients with RAF or RAS mutations.
Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Vemurafenib/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genéticaRESUMEN
Through a structure-based irreversible drug design approach, we have discovered a highly potent IDH1-mutant inhibitor compound 16 (IHMT-IDH1-053) (IC50 = 4.7 nM), which displays high selectivity against IDH1 mutants over IDH1 wt and IDH2 wt/mutants. The crystal structure demonstrates that 16 binds to the IDH1 R132H protein in the allosteric pocket adjacent to the NAPDH binding pocket through a covalent bond with residue Cys269. 16 inhibits 2-hydroxyglutarate (2-HG) production in IDH1 R132H mutant transfected 293T cells (IC50 = 28 nM). In addition, it inhibits the proliferation of HT1080 cell line and primary AML cells which both bear IDH1 R132 mutants. In vivo, 16 inhibits 2-HG level in a HT1080 xenograft mouse model. Our study suggested that 16 would be a new pharmacological tool to study IDH1 mutant-related pathology and the covalent binding mode provided a novel approach for designing irreversible IDH1 inhibitors.
Asunto(s)
Inhibidores Enzimáticos , Isocitrato Deshidrogenasa , Ratones , Humanos , Animales , Isocitrato Deshidrogenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Línea Celular , Diseño de Fármacos , MutaciónRESUMEN
Bombyx mori Cathepsin D (BmCatD) is specifically expressed in the fat body, and plays a critical role for the programmed cell death of the larval fat body and pupal gut during metamorphosis. To better understand the transcriptional control of BmCatD expression, we conducted this study to identify the ecdysone response elements (EcREs) in the BmCatD promoter and clarify their regulational functions. We inserted EcREs into a recombinant AcMNPV (Autographa californica multiple nucleopolyhedrovirus) vector and performed luciferase assay with a dual-luciferase quantitative assay system. Three putative EcREs were located at positions -109 to -99, -836 to -826 and -856 to -846 relative to the transcription start site. Overlapping deletion studies of this EcRE region showed that the three EcREs could suppress the ectopic expression of the BmCatD promoter. EcRE mutations resulted in the loss of the fat body-specific expression of the BmCatD gene. These results suggest that the EcREs are vital for activation of the promoter by 20-hydroxyecdysone (20E) in the larval fat body and further support the crucial role of ecdysone signaling to control cathepsin D gene transcription. It may suggest that the heterodimeric complex EcR/USP mediates the activation of ecdysone-dependent BmCatD transcription in the larval fat body of B. mori.
Asunto(s)
Bombyx/genética , Catepsina D/genética , Ecdisona/fisiología , Elementos de Respuesta/genética , Activación Transcripcional , Animales , Secuencia de Bases , Bombyx/crecimiento & desarrollo , Ecdisona/farmacología , Ecdisterona/farmacología , Luciferasas/genética , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/efectos de los fármacos , Sitio de Iniciación de la TranscripciónRESUMEN
Drug nanocrystals, one of most common drug delivery systems, enable the delivery of poorly water-soluble drugs with high drug loading and enhanced dissolution. The rapid clearance and uncontrolled drug release of drug nanocrystals limit their delivery efficiency and clinical application. Herein, an amphiphilic co-polymer, poly oligo(ethylene glycol) methacrylate-b-poly(styrene-co-4-formylphenyl methacrylate) (POEGMA-b-P (St-co-FPMA), PPP), characterized by a hydrophilic part with bottlebrush-like oligo(ethylene glycol) methacrylate (OEGMA) side chains, was synthesized as stabilizers to fabricate a high-drug-loading nanocrystal micelle (053-PPP NC micelle) using the chronic myeloid leukemia (CML) drug candidate N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053 or 053) as a model drug. The 053-PPP NC micelle was characterized and subjected to in vitro and in vivo studies. It featured a worm-like shape of small size, high drug loading (~50%), high colloidal stability, and controlled release in vitro. The presence of the 053-PPP NC micelle resulted in a long-circulation property and a much higher AUC. The 053-PPP NC micelle induced higher accumulation in the tumor tissues under multiple continuous administration. For in vivo efficacy, the 053-PPP NC micelle with a longer dosing interval (96 h), beneficial for improving patient adherence, demonstrated superiority to the 053-F127 NC. The proposed stabilizer PPP and the 053-PPP NC micelle with high drug loading enables drug delivery with long circulation and controlled release of drugs. It is also promising for the development of more efficient nanocrystal-based intravenous injection formulations for poorly water-soluble drugs. It might also offer new possibilities for potential clinical application of the CML candidate drug 053.
RESUMEN
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
RESUMEN
The critical pathogenesis of type 1 diabetes (T1D)/type 2 diabetes (T2D) is the physical status, mass, and function of pancreatic ß cells. Mammalian STE20-like protein 1 kinase (MST1) plays vital roles in the apoptosis and insulin secretion of ß cells. Here, we discovered a novel, potent, and selective MST1 inhibitor 19 (IC50 = 23 nM), which inhibited the phosphorylation of MST1-protected ß cells from the damage of inflammatory cytokines in vitro. In vivo, it displayed acceptable pharmacokinetic properties in different species. In the STZ-induced T1D/T2D mouse models, both monotherapy of 19 and in combination with metformin led to the decline of fasting blood glucose and showed protective effect of ß cells. In addition, the combination of 19 and metformin decreased the hemoglobin A1c level. Together, our study suggested that 19 might be a useful pharmacological tool to study MST1-mediated physiology and pathology as well as a potential drug candidate for diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Metformina , Animales , Apoptosis/fisiología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Mamíferos , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Proteínas Serina-Treonina QuinasasRESUMEN
Glutathione S-transferases (GSTs) are believed to play a role in the detoxification of xenobiotics, resistance to insect viruses and pesticides, intracellular transport, biosynthesis of hormones and protection against oxidative stress. In this study, we used quantitative real time RT-PCR to examine expression profiles of the silkworm Bombyx mori GST-Sigma (BmGSTS2) and GST-Delta (BmGSTD2) genes in the larval midgut of the silkworm after exposure to 2-hydroxyecdysone (20E) and juvenile hormone analog (JHA). In concentration-course study, 20E at higher concentrations (1.0 and 2.0 µg/µl) caused significant upregulation of BmGSTD2, and all concentrations (0.5-2.0 µg/µl) of 20E caused significant upregulation of BmGSTS2. However, JHA in all concentrations downregulated the expression of BmGSTD2 and BmGSTS2. When exposed to either 20E (2.0 µg/µl) or JHA (2.0 µg/µl) on the third day of the fifth instar, the silkworm had higher BmGSTD2 at later time points: 15, 18, and 24 h for 20E and 24 h for JHA. BmGSTS2 expression was downregulated within 24 h after exposure to JHA and showed a time-dependent response after exposure to 20E. We also did a stage-dependent study, in which JHA downregulated BmGSTD2 expression and upregulated BmGSTS2 expression significantly at both day 1 and day 3 of the fifth instar. 20E upregulated the expression of BmGSTD2 and BmGSTS2 at the two stages. These findings imply that hormones have an important role in the regulation of basal GST expression. However, further validation and field trials should be carried out on the regulatory elements relevant to BmGSTD2 and BmGSTS2 gene expression.