Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Ceram Soc ; 106(1): 186-200, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36589901

RESUMEN

One-pot synthesized twin perovskite oxide composite of BaCe0.5Fe0.5O3- δ (BCF), comprising cubic and orthorhombic perovskite phases, shows triple-conducting properties for promising solid oxide electrochemical cells. Phase composition evolution of BCF under various conditions was systematically investigated, revealing that the cubic perovskite phase could be fully/partially reduced into the orthorhombic phase under certain conditions. The reduction happened between the two phases at the interface, leading to the microstructure change. As a result, the corresponding apparent conducting properties also changed due to the difference between predominant conduction properties for each phase. Based on the revealed phase composition, microstructure, and electrochemical properties changes, a deep understanding of BCF's application in different conditions (oxidizing atmospheres, reducing/oxidizing gradients, cathodic conditions, and anodic conditions) was achieved. Triple-conducting property (H+/O2-/e-), fast open-circuit voltage response (∼16-∼470 mV) for gradients change, and improved single-cell performance (∼31% lower polarization resistance at 600°C) were comprehensively demonstrated. Besides, the performance was analyzed under anodic conditions, which showed that the microstructure and phase change significantly affected the anodic behavior.

2.
Small ; 18(50): e2204784, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36300911

RESUMEN

A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.

3.
ACS Omega ; 5(20): 11637-11642, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478254

RESUMEN

One of the essential challenges for energy conversion and storage devices based on protonic ceramics is that the high temperature (1600-1700 °C) and long-time firing (>10 h) are inevitably required for the fabrication, which makes the sustainable and clean manufacturing of protonic ceramic devices impractical. This study provided a new rapid laser reactive sintering (RLRS) method for the preparation of nine protonic ceramics [i.e., BaZr0.8Y0.2O3-δ (BZY20), BZY20 + 1 wt % NiO, BaCe0.7Zr0.1Y0.1Yb0.1O3-δ (BCZYYb), BCZYYb + 1 wt % NiO, 40 wt % BCZYYb + 60 wt % NiO, BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ (BCF), BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1), BaCe0.6Zr0.3Y0.1O3-δ (BCZY63), and La0.7Sr0.3CrO3-δ (LSC)] with desired crystal structures and microstructures. Following this, the dual-layer half-cells, comprising the porous electrode and dense electrolyte, were prepared by the developed RLRS technique. After applying the BCFZY0.1 cathode, the protonic ceramic fuel cell (PCFC) single cells were prepared and tested initially. The derived conductivity of the RLRS electrolyte films showed comparable proton conductivity with the electrolyte prepared by conventional furnace sintering. The initial cost estimation based on electricity consumption during the sintering process for the fabrication of PCFC single cells showed that RLRS is more competitive than the conventional furnace sintering. This RLRS can be combined with the rapid additive manufacturing of ceramics for the sustainable and clean manufacturing of protonic ceramic energy devices and the processing of other ceramic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA