Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612691

RESUMEN

Plant annexins constitute a conserved protein family that plays crucial roles in regulating plant growth and development, as well as in responses to both biotic and abiotic stresses. In this study, a total of 144 annexin genes were identified in the barley pan-genome, comprising 12 reference genomes, including cultivated barley, landraces, and wild barley. Their chromosomal locations, physical-chemical characteristics, gene structures, conserved domains, and subcellular localizations were systematically analyzed to reveal the certain differences between wild and cultivated populations. Through a cis-acting element analysis, co-expression network, and large-scale transcriptome analysis, their involvement in growth, development, and responses to various stressors was highlighted. It is worth noting that HvMOREXann5 is only expressed in pistils and anthers, indicating its crucial role in reproductive development. Based on the resequencing data from 282 barley accessions worldwide, genetic variations in thefamily were investigated, and the results showed that 5 out of the 12 identified HvMOREXanns were affected by selection pressure. Genetic diversity and haplotype frequency showed notable reductions between wild and domesticated barley, suggesting that a genetic bottleneck occurred on the annexin family during the barley domestication process. Finally, qRT-PCR analysis confirmed the up-regulation of HvMOREXann7 under drought stress, along with significant differences between wild accessions and varieties. This study provides some insights into the genome organization and genetic characteristics of the annexin gene family in barley at the pan-genome level, which will contribute to better understanding its evolution and function in barley and other crops.


Asunto(s)
Hordeum , Procedimientos de Cirugía Plástica , Hordeum/genética , Anexinas/genética , Domesticación , Productos Agrícolas
2.
Ecotoxicol Environ Saf ; 260: 115070, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257347

RESUMEN

Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 µg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 µg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Tetraciclina , Farmacorresistencia Microbiana/genética , Bacterias , Agua
3.
J Allergy Clin Immunol ; 150(1): 192-203, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35120971

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) play potentially important roles in various human diseases; however, their roles in the goblet cell metaplasia of asthma remain unknown. OBJECTIVE: We sought to investigate the potential role and underlying mechanism of circZNF652 in the regulation of allergic airway epithelial remodeling. METHODS: The differential expression profiles of circRNAs were analyzed by transcriptome microarray, and the effects and mechanisms underlying circZNF652-mediated goblet cell metaplasia were investigated by quantitative real-time PCR, RNA fluorescence in situ hybridization, Western blot, RNA pull-down, and RNA immunoprecipitation analyses. The roles of circZNF652 and miR-452-5p in allergic airway epithelial remodeling were explored in both the mouse model with allergic airway inflammation and children with asthma. RESULTS: One hundred sixty circRNAs were differentially expressed in bronchoalveolar lavage fluid of children with asthma versus children with foreign body aspiration, and 52 and 108 of them were significantly upregulated and downregulated, respectively. Among them, circZNF652 was predominantly expressed and robustly upregulated in airway epithelia of both the children with asthma and the mouse model with allergic airway inflammation. circZNF652 promoted the goblet cell metaplasia by functioning as a sponge of miR-452-5p, which released the Janus kinase 2 (JAK2) expression and subsequently activated JAK2/signal transducer and activator of transcription 6 (STAT6) signaling in the allergic airway epithelia. In addition, epithelial splicing regulatory protein 1, a splicing factor, accelerated the biogenesis of circZNF652 by binding to its flanking intron to promote the goblet cell metaplasia in allergic airway epithelial remodeling. CONCLUSIONS: Upregulation of circZNF652 expression in allergic bronchial epithelia contributed to the goblet cell metaplasia by activating the miR-452-5p/JAK2/STAT6 signaling pathway; thus, blockage of circZNF652 or agonism of miR-452-5p provided an alternative approach for the therapeutic intervention of epithelial remodeling in allergic airway inflammation.


Asunto(s)
Asma , Células Caliciformes , Hipersensibilidad , Janus Quinasa 2 , MicroARNs , ARN Circular , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Asma/patología , Niño , Humanos , Hipersensibilidad/metabolismo , Hibridación Fluorescente in Situ , Inflamación/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Metaplasia/genética , Ratones , MicroARNs/genética , ARN Circular/genética , Transducción de Señal
4.
Molecules ; 28(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836658

RESUMEN

TWIK1 (K2P1.1/KCNK1) belongs to the potassium channels of the two-pore domain. Its current is very small and difficult to measure. In this work, we used a 100 mM NH4+ extracellular solution to increase TWIK1 current in its stable cell line expressed in HEK293. Then, the inhibition of magnolol on TWIK1 was observed via a whole-cell patch clamp experiment, and it was found that magnolol had a significant inhibitory effect on TWIK1 (IC50 = 6.21 ± 0.13 µM). By molecular docking and alanine scanning mutagenesis, the IC50 of TWIK1 mutants G229A, T225A, I140A, L223A, and S224A was 20.77 ± 3.20, 21.81 ± 7.93, 10.22 ± 1.07, 9.55 ± 1.62, and 7.43 ± 3.20 µM, respectively. Thus, we conclude that the inhibition of the TWIK1 channel by magnolol is related to G229 and T225 on the P2- pore helix.


Asunto(s)
Compuestos de Bifenilo , Canales de Potasio , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Canales de Potasio/metabolismo , Compuestos de Bifenilo/farmacología
5.
Angew Chem Int Ed Engl ; 62(5): e202214569, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36477993

RESUMEN

Understanding the guest-induced dynamic deformation process of covalent organic frameworks (COFs) is vitally important to further increase their stimulus-response performances. Here we report on the dark-field microscopic (DFM) imaging approach to in situ monitor the guest-induced deformation evolution of individual COF-300 crystals in real time. We observe not only transient and nonequilibrium intermediate deformation states but also local surface curvature-driven diverse adsorption behaviours of single COF-300 particles for dichloromethane (DCM), undergoing one, two, and multiple expansion-contraction deformations as well as contraction-to-expansion transition. The surface curvature-dominated deformations are ascribed to the significant differences in the adsorption capacity for DCM at the curved tip and flat side regions, in which DCM can be adsorbed preferentially by curved tip regions of COF-300.

6.
Analyst ; 146(20): 6187-6192, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558582

RESUMEN

Triacetone triperoxide (TATP) explosives, a popular choice for terrorists, have been used in many violent terrorist attacks all over the world. However, simple, rapid, and on-site detection methods of TATP are still lacking. Herein, we present a visual colorimetric method for on-site and rapid detection of TATP based on a Fe(II)-promoted thermal decomposition process of TATP. We discovered that TATP can be decomposed into H2O2 under heating conditions, and it reacts with Fe2+ to produce hydroxyl radicals (˙OH) and Fe3+via the Fenton reaction. The resulting ˙OH and Fe3+ further oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a yellow oxidized product (oxTMB). These reaction processes remarkably promote the chemical equilibrium shift and decrease the activation energy. Using the TATP-Fe2+-TMB ternary chromogenic system, the present colorimetric assay for TATP shows a dynamic range of 0.5-30 µM with a low detection limit of 0.12 µM. Additionally, common substances (e.g., inorganic salts, small organic substances, and polymers) do not interfere with TATP detection. This assay can be used for analyzing TATP in real water and camouflage samples. Furthermore, a test-paper-based method was also successfully developed for visual, rapid and on-site detection of TATP.


Asunto(s)
Colorimetría , Peróxido de Hidrógeno , Compuestos Ferrosos , Compuestos Heterocíclicos con 1 Anillo , Peróxidos
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(3): 303-309, 2019 05 25.
Artículo en Zh | MEDLINE | ID: mdl-31496163

RESUMEN

OBJECTIVE: To determine the correlation of phosphorylated ribosomal S6 protein (P-S6) content in blood and brain tissue in mice and rats with seizure. METHODS: Seizure models were induced by intraperitoric injection of kainic acid (KA) in C57BL/mice and SD rats. Flow cytometry was used to detect the content of P-S6 in blood; Western blot was used to detect the expression of P-S6 in brain tissues. The correlation between P-S6 expression in blood and in brain tissue was examine by Pearson analysis, and the correlation between P-S6 expression in blood and the severity of seizure was also observed. RESULTS: Western blotting analysis showed that the expression of P-S6 was significantly increased in peripheral blood and brain tissue in mice 1 h after KA-induced seizure,and the expression levels increased to (1.49±0.45) times (P<0.05) and (2.55±0.66) times (P <0.01) of the control group, respectively. Flow cytometry showed that the positive percentage and average fluorescence intensity of P-S6 in the blood of mice increased significantly 1 h after KA-induced seizures (P<0.01), which was consistent with the expression of P-S6 in brain tissue (r=0.8474, P<0.01). Flow cytometry showed that the average fluorescence intensity of P-S6 in blood increased from 14.89±9.75 to 52.35±21.72 (P<0.01) in rats with seizure, which was consistent with the change of P-S6 in brain tissue (r=0.9385, P<0.01). Rats with higher levels of seizure were of higher levels of P-S6 in peripheral blood. CONCLUSIONS: Consistent correlation of P-S6 expression is demonstrated in peripheral blood and in brain tissue after KA-induced seizure, suggesting that the expression of P-S6 in blood can accurately reflect the changes of mTOR signaling pathway in brain tissue.


Asunto(s)
Encéfalo , Regulación de la Expresión Génica , Ácido Kaínico , Convulsiones , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fosforilación , Ratas , Ratas Sprague-Dawley , Convulsiones/sangre , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
8.
Front Pharmacol ; 15: 1378315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725668

RESUMEN

NaV1.4 is a voltage-gated sodium channel subtype that is predominantly expressed in skeletal muscle cells. It is essential for producing action potentials and stimulating muscle contraction, and mutations in NaV1.4 can cause various muscle disorders. The discovery of the cryo-EM structure of NaV1.4 in complex with ß1 has opened new possibilities for designing drugs and toxins that target NaV1.4. In this review, we summarize the current understanding of channelopathies, the binding sites and functions of chemicals including medicine and toxins that interact with NaV1.4. These substances could be considered novel candidate compounds or tools to develop more potent and selective drugs targeting NaV1.4. Therefore, studying NaV1.4 pharmacology is both theoretically and practically meaningful.

9.
Antibiotics (Basel) ; 13(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39334992

RESUMEN

The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.

10.
Bioresour Technol ; 410: 131298, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153697

RESUMEN

Tunnel Oxide Passivating Contacts (TOPcon) battery in the photovoltaic industry generates high ammonium wastewater during the production process, the adaptability of using the anaerobic ammonia oxidation (Anammox) process for photovoltaic wastewater (PVW) treatment is a research hotspot. Based on the analysis of photovoltaic wastewater quality, the effectiveness of nitrogen removal, sludge characteristics and microbial communities were examined. The results showed that when the influent NH4+-N concentration of PVW was lower than 150 mg·L-1, the nitrogen removal efficiency (NRE) was almost 100 %. In addition, the NRE decreased from 74 % sharply to 20 % when the NH4+-N concentration was increased from 175 mg·L-1 to 200 mg·L-1. The extracellular polymeric substances (EPS) content increased with elevated ammonium concentration in the influent, indicating that microorganisms secreted more EPS to resist elevated nitrogen loading. The main functional populations were Candidatus Kuenenia (0-24 %). The influent ammonium concentration is recommended to be < 200 mg·L-1.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Oxidación-Reducción , Aguas Residuales , Aguas Residuales/química , Purificación del Agua/métodos , Anaerobiosis , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Amoníaco/metabolismo , Reactores Biológicos/microbiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-36767116

RESUMEN

OBJECTIVES: This paper aims to explore the factors influencing the spatial cognition of the visually impaired in familiar environments. BACKGROUND: Massage hospitals are some of the few places that can provide work for the visually impaired in China. Studying the spatial cognition of the visually impaired in a massage hospital could be instructive for the design of working environments for the visually impaired and other workplaces in the future. METHODS: First, the subjective spatial cognition of the visually impaired was evaluated by object layout tasks for describing the spatial relationships among object parts. Second, physiological monitoring signal data, including the electrodermal activity, heart rate variability, and electroencephalography, were collected while the visually impaired doctors walked along prescribed routes based on the feature analysis of the physical environment in the hospital, and then their physiological monitoring signal data for each route were compared. The visual factors, physical environmental factors, and human-environment interactive factors that significantly impact the spatial cognition of visually impaired people were discussed. CONCLUSIONS: (1) visual acuity affects the spatial cognition of the visually impaired in familiar environments; (2) the spatial cognition of the visually impaired can be promoted by a longer staying time and the more regular sequence of a physical environment; (3) the spatial comfort of the visually impaired can be improved by increasing the amount of greenery; and (4) the visual comfort of the visually impaired can be reduced by rich interior colors and contrasting lattice floor tiles.


Asunto(s)
Cognición , Personas con Daño Visual , Humanos , Cognición/fisiología , Agudeza Visual , Ambiente , China
12.
Methods Mol Biol ; 2637: 49-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773137

RESUMEN

A wide range of diseases, including cancer, autoimmune diseases, or neurodegenerative diseases, have been associated with single nucleotide mutations in their causative genes. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is a flexible and efficient genome engineering technology widely used for researches and therapeutic applications which offers immense opportunity to treat genetic diseases. The complex of Cas9 and the guide RNA acts as an RNA-guided endonuclease. Cas9 recognizes a sequence motif known as a protospacer adjacent motif (PAM), and then the guide RNA base pairs with its proximal target region of 20 nucleotides with sequence complementarity. Here we describe the procedure named single nucleotide polymorphism-distinguishable (SNPD)-CRISPR system which can suppress or enhance the expression of disease-causative gene with single nucleotide mutation distinguished from its wild-type. In this study, we used HRAS, one of most famous cancer-causative genes, as an example of a target gene.


Asunto(s)
Sistemas CRISPR-Cas , Polimorfismo de Nucleótido Simple , Sistemas CRISPR-Cas/genética , ARN/genética , Nucleótidos , Expresión Génica
13.
J Phys Chem Lett ; 14(8): 2099-2105, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802546

RESUMEN

Quantitatively visualizing the thermal dehydration in metal-organic frameworks (MOFs), especially at the single-particle level, is still challenging, hindering a deeper understanding of the reaction dynamics. Using in situ dark-field microscopy (DFM), we image the thermal dehydration process of single water-containing HKUST-1 (H2O-HKUST-1) metal-organic framework (MOF) particles. DFM maps the color intensity of single H2O-HKUST-1, which is linearly correlated with the water content in the HKUST-1 framework, enabling a direct quantification of several reaction kinetic parameters of single HKUST-1 particles. Interestingly, when H2O-HKUST-1 is transformed into deutoxide (D2O)-containing HKUST-1, the corresponding thermal dehydration reaction displays higher temperature parameters and activation energy but shows a lower rate constant and diffusion coefficient, revealing the isotope effect. The significant variation of the diffusion coefficient is also confirmed by molecular dynamics simulations. The present operando results are anticipated to provide valuable guidelines for the design and development of advanced porous materials.

14.
Bioresour Technol ; 368: 128371, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423756

RESUMEN

The large-scale application of bioelectrochemical coupled anaerobic digestion (BES-AD) is limited by the matching of electrode configuration and the applicability of real wastewater. In this study, a pilot-scale BES-AD system with an effective system volume of 5 m3 and a 1 m3 volume of a carbon fiber brush electrode module was constructed and tested for treatment of the membrane manufacturing wastewater. The results showed that the BOD5/COD of the wastewater was increased from 0.238 to 0.398 when the applied voltage was 0.9 V. The pollutants such as N, N-Dimethylacetamide and glycerol in wastewater were degraded significantly. The microorganisms in the electrode modules were spatially enriched. The fermenters (Norank_f__ML635J-40_aquatic_group, 6.55 %; unclassified_f__Propionibacteriaceae, 5.25 %) and degraders (Corynebacterium, 29.31 %) were mostly enriched at the bottom, while electroactive bacteria (Pseudomonas, 29.39 %, Geobacter, 7.86 %) were mostly enriched at the top. Combined with the economical construction and operation cost ($1708.8/m3 and $0.76/m3) of the BES-AD system.


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Estudios de Factibilidad , Electrodos
15.
Sci Total Environ ; 855: 158912, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162577

RESUMEN

Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 µm aperture stainless-steel mesh cathode (SSM-100 µm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 µm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Aguas Residuales/química , Acero Inoxidable , Hidrólisis , Filogenia , Electrólisis/métodos , Electrodos , Carbono/química , Bacterias , Textiles , Concentración de Iones de Hidrógeno
16.
Technol Health Care ; 30(S1): 163-171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124594

RESUMEN

BACKGROUND: Ultrasound computed tomography (USCT) is a promising technique for improving the detection of breast cancer. Image quality of USCT has a major impact on the breast cancer diagnosis. OBJECTIVE: This paper investigates the combination of variational mode decomposition (VMD) and coherent factor method for USCT image quality enhancement. METHODS: The signals can be decomposed into multiple intrinsic mode functions (IMFs) sifting through the frequency by VMD method. Refactoring the remaining IMFs, spatio-temporally smoothed coherence factor (STSCF) beamforming method is applied to reconstructed data for USCT. RESULTS: The validation of combination the VMD and STSCF is described through the breast phantom experiment and in vivo experiments. The evaluation indicators such as contrast ratio (CR), contrast to noise ratio (CNR) and signal to noise ratio (SNR) have been better improved in the experimental results. For the breast phantom, the proposed method gives a higher resolution and the better contrast properties for the hyperechoic cyst. The borders of cysts and tumors in the breast phantom can be distinguished clearly. For volunteer breast experiments, artifacts are removed more efficiently while the clutters are suppressed simultaneously. CONCLUSION: The combination of VMD and STSCF can further reduce the noise and suppress the side lobes.


Asunto(s)
Algoritmos , Aumento de la Imagen , Computadores , Humanos , Aumento de la Imagen/métodos , Tomografía Computarizada por Rayos X , Ultrasonografía/métodos
17.
Clin Epigenetics ; 14(1): 146, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371218

RESUMEN

Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.


Asunto(s)
Metilación de ADN , Impresión Genómica , Humanos , Epigénesis Genética , Genoma
18.
Metabolism ; 136: 155295, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36007622

RESUMEN

OBJECTIVE: Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and associated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. METHODS: We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to determine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome signatures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. RESULTS: In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPARγ, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. CONCLUSIONS: Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.


Asunto(s)
Síndrome de Prader-Willi , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Niño , Humanos , Hiperfagia/metabolismo , Obesidad/metabolismo , PPAR gamma , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Precursores del ARN , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Expansión de Tejido
19.
Materials (Basel) ; 14(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072588

RESUMEN

In this work, a 6-pass hot-rolling process followed by air cooling is studied by means of a coupled multi-scale simulation approach. The finite element method (FEM) is utilized to obtain macroscale thermomechanical parameters including temperature and strain rate. The microstructure evolution during the recrystallization and austenite (γ) to ferrite (α) transformation is simulated by a mesoscale cellular automaton (CA) model. The solute drag effect is included in the CA model to take into account the influence of manganese on the γ/α interface migration. The driving force for α-phase nucleation and growth also involves the contribution of the deformation stored energy inherited from hot-rolling. The simulation renders a clear visualization of the evolving grain structure during a multi-pass hot-rolling process. The variations of the nonuniform, deformation-stored energy field and carbon concentration field are also reproduced. A detailed analysis demonstrates how the parameters, including strain rate, grain size, temperature, and inter-pass time, influence the different mechanisms of recrystallization. Grain refinement induced by recrystallization and the γ→α phase transformation is also quantified. The simulated final α-fraction and the average α-grain size agree reasonably well with the experimental microstructure.

20.
Sci Total Environ ; 800: 149645, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34399327

RESUMEN

Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitratos , Nitrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA