Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 629(8014): 1118-1125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio , Germinación , Concentración Osmolar , Polen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinación/genética , Mutación , Polen/genética , Polen/metabolismo , Agua/metabolismo , Células HEK293 , Humanos , Deshidratación
2.
Plant J ; 119(2): 1039-1058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804740

RESUMEN

Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Lisina , Proteínas de Plantas , Tallos de la Planta , Proteómica , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Pared Celular/metabolismo , Pared Celular/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Theor Appl Genet ; 136(3): 46, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912954

RESUMEN

KEY MESSAGE: CaFCD1 gene regulates pepper cuticle biosynthesis. Pepper (Capsicum annuum L.) is an economically important vegetable crop that easily loses water after harvesting, which seriously affects the quality of its product. The cuticle is the lipid water-retaining layer on the outside of the fruit epidermis, which regulates the biological properties and reduces the rate of water-loss. However, the key genes involved in pepper fruit cuticle development are poorly understood. In this study, a pepper fruit cuticle development mutant fcd1 (fruit cuticle deficiency 1) was obtained by ethyl methanesulfonate mutagenesis. The mutant has great defects in fruit cuticle development, and the fruit water-loss rate of fcd1is significantly higher than that of the wild-type '8214' line. Genetic analysis suggested that the phenotype of the mutant fcd1 cuticle development defect was controlled by a recessive candidate gene CaFCD1 (Capsicum annuum fruit cuticle deficiency 1) on chromosome 12, which is mainly transcribed during fruit development. In fcd1, a base substitution within the CaFCD1 domain resulted in the premature termination of transcription, which affected cutin and wax biosynthesis in pepper fruit, as revealed by the GC-MS and RNA-seq analysis. Furthermore, the yeast one-hybrid and dual-luciferase reporter assays verified that the cutin synthesis protein CaCD2 was directly bound to the promoter of CaFCD1, suggesting that CaFCD1 may be a hub node in the cutin and wax biosynthetic regulatory network in pepper. This study provides a reference for candidate genes of cuticle synthesis and lays a foundation for breeding excellent pepper varieties.


Asunto(s)
Capsicum , Capsicum/genética , Capsicum/metabolismo , Fitomejoramiento , Fenotipo , Frutas/metabolismo , Agua/metabolismo , Estudios de Asociación Genética , Regulación de la Expresión Génica de las Plantas
4.
BMC Genomics ; 23(1): 411, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650553

RESUMEN

BACKGROUND: Catalases (CATs) break down hydrogen peroxide into water and oxygen to prevent cellular oxidative damage, and play key roles in the development, biotic and abiotic stresses of plants. However, the evolutionary relationships of the plant CAT gene family have not been systematically reported. RESULTS: Here, we conducted genome-wide comparative, phylogenetic, and structural analyses of CAT orthologs from 29 out of 31 representative green lineage species to characterize the evolution and functional diversity of CATs. We found that CAT genes in land plants were derived from core chlorophytes and detected a lineage-specific loss of CAT genes in Fabaceae, suggesting that the CAT genes in this group possess divergent functions. All CAT genes were split into three major groups (group α, ß1, and ß2) based on the phylogeny. CAT genes were transferred from bacteria to core chlorophytes and charophytes by lateral gene transfer, and this led to the independent evolution of two types of CAT genes: α and ß types. Ten common motifs were detected in both α and ß groups, and ß CAT genes had five unique motifs, respectively. The findings of our study are inconsistent with two previous hypotheses proposing that (i) new CAT genes are acquired through intron loss and that (ii) the Cys-343 residue is highly conserved in plants. We found that new CAT genes in most higher plants were produced through intron acquisition and that the Cys-343 residue was only present in monocots, Brassicaceae and Pp_CatX7 in P. patens, which indicates the functional specificity of the CATs in these three lineages. Finally, our finding that CAT genes show high overall sequence identity but that individual CAT genes showed developmental stage and organ-specific expression patterns suggests that CAT genes have functionally diverged independently. CONCLUSIONS: Overall, our analyses of the CAT gene family provide new insights into their evolution and functional diversification in green lineage species.


Asunto(s)
Chlorophyta , Embryophyta , Catalasa/genética , Chlorophyta/genética , Embryophyta/genética , Evolución Molecular , Genes de Plantas , Filogenia , Plantas/genética
5.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232967

RESUMEN

Chili pepper is an important economic vegetable worldwide. MYB family gene members play an important role in the metabolic processes in plant growth and development. In this study, 103 pepper MYB-related members were identified and grouped into nine subfamilies according to phylogenetic relationships. Additionally, a total of 80, 20, and 37 collinear gene pairs were identified between pepper and tomato, pepper and Arabidopsis, and tomato and Arabidopsis, respectively. We performed promoter cis-element analysis and showed that CaMYB-related members may be involved in multiple biological processes such as growth and development, secondary metabolism, and circadian rhythm regulation. Expression pattern analysis indicated that CaMYB37 is significantly more enriched in fruit placenta, suggesting that this gene may be involved in capsaicin biosynthesis. Through VIGS, we confirmed that CaMYB37 is critical for the biosynthesis of capsaicin in placenta. Our subcellular localization studies revealed that CaMYB37 localized in the nucleus. On the basis of yeast one-hybrid and dual-luciferase reporter assays, we found that CaMYB37 directly binds to the promoter of capsaicin biosynthesis gene AT3 and activates its transcription, thereby regulating capsaicin biosynthesis. In summary, we systematically identified members of the CaMYB-related family, predicted their possible biological functions, and revealed that CaMYB37 is critical for the transcriptional regulation of capsaicin biosynthesis. This work provides a foundation for further studies of the CaMYB-related family in pepper growth and development.


Asunto(s)
Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Capsaicina/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Genet Mol Biol ; 44(3): e20210030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34555144

RESUMEN

Cytoplasmic male sterility (CMS) is a maternally inherited trait that derives from the inability to produce functional pollen in higher plants. CMS results from recombination of the mitochondrial genome. However, understanding of the molecular mechanism of CMS in pepper is limited. In this study, comparative transcriptomic analyses were performed using a near-isogenic CMS line 14A (CMS-14A) and a maintainer line 14B (ML-14B) as experimental materials. A total of 17,349 differentially expressed genes were detected between CMS-14A and ML-14B at the PMC meiosis stage. Among them, six unigenes associated with CMS and 108 unigenes involved in energy metabolism were identified. The gene orf165 was found in CMS-14A. When orf165 was introduced into ML-14B, almost 30% of transgenic plants were CMS. In addition, orf165 expression in transgenic CMS plants resulted in abnormal function of some genes involved in energy metabolism. When orf165 in transgenic CMS plant was silenced, the resulted orf165-silenced plant was male fertile and the expression patterns of some genes associated with energy metabolism were similar to ML-14B. Thus, we confirmed that orf165 influenced CMS in pepper.

7.
Plant J ; 99(4): 763-783, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009127

RESUMEN

Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made toward understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57 862 high-quality full-length mRNA sequences derived from 18 362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://bigd.big.ac.cn/gsa Accession number, CRA001412.


Asunto(s)
Capsicum/genética , Capsicum/metabolismo , ARN sin Sentido/metabolismo , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , ARN sin Sentido/genética , ARN Mensajero/genética
8.
Mol Genet Genomics ; 295(2): 343-356, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31745640

RESUMEN

Dwarfing is the development trend of pepper breeding. It is of great practical and scientific value to generate new dwarf germplasms, and identify new genes or alleles conferring dwarf traits in pepper. In our previous study, a weakly BR-insensitive dwarf mutant, E29, was obtained by EMS mutagenesis of the pepper inbred line 6421. It can be used as a good parent material for breeding new dwarf varieties. Here, we found that this dwarf phenotype was controlled by a single recessive gene. Whole-genome resequencing, dCAPs analysis, and VIGs validation revealed that this mutation was caused by a nonsynonymous single-nucleotide mutation (C to T) in CaBRI1. An enzyme activity assay, transcriptome sequencing, and BL content determination further revealed that an amino-acid change (Pro1157Ser) in the serine/threonine protein kinase and catalytic (S_TKc) domain of CaBRI1 impaired its kinase activity and caused the transcript levels of two important genes (CaDWF4 and CaROT3) participating in BR biosynthesis to increase dramatically in the E29 mutant, accompanied by significantly increased accumulation of brassinolide (BL). Therefore, we concluded that the novel single-base mutation in CaBRI1 conferred the dwarf phenotype and resulted in brassinosteroid (BR) accumulation in pepper. This study provides a new allelic variant of the height-regulating gene CaBRI1 that has theoretical and practical values for the breeding of the plants suitable for the facility cultivation and mechanized harvesting of pepper varieties.


Asunto(s)
Brasinoesteroides/metabolismo , Capsicum/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Alelos , Secuencia de Aminoácidos/genética , Capsicum/metabolismo , Dominio Catalítico/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Mutagénesis/genética , Mutación/genética , Oryza/genética , Proteínas Quinasas/genética , Homología de Secuencia de Aminoácido , Esteroides Heterocíclicos/metabolismo , Secuenciación Completa del Genoma
9.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183026

RESUMEN

Limited knowledge is available for phosphorylation modifications in pepper (Capsicum annuum L.), especially in pepper fruit development. In this study, we conducted the first comprehensive phosphoproteomic analysis of pepper fruit at four development stage by Tandem Mass Tag proteomic approaches. A total of 2639 unique phosphopeptides spanning 1566 proteins with 4150 nonredundant sites of phosphorylation were identified, among which 2327 peptides in 1413 proteins were accurately quantified at four different stages. Mature Green (MG) to breaker stage showed the largest number of differentially expressed phosphoproteins and the number of downregulated phosphoproteins was significantly higher than that of upregulated after MG stage. Twenty seven phosphorylation motifs, including 22 pSer motifs and five pThr motifs and 85 kinase including 28 serine/threonine kinases, 14 receptor protein kinases, six mitogen-activated protein kinases, seven calcium-dependent protein kinases, two casein kinases, and some other kinases were quantified. Then the dynamic changes of phosphorylated proteins in ethylene and abscisic acid signaling transduction pathways during fruit development were analyzed. Our results provide a cascade of phosphoproteins and a regulatory network of phosphorylation signals, which help to further understand the mechanism of phosphorylation in pepper fruit development.


Asunto(s)
Capsicum/genética , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Fosfoproteínas/genética , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteoma/genética , Transducción de Señal
10.
Genet Mol Biol ; 43(2): e20180267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32478788

RESUMEN

The measurement of gene expression can provide important information about gene function and the molecular basis for developmental processes. We analyzed the transcriptomes at three different developmental stages of pepper flower [sporogenous cell division, stage (B1); pollen mother cell meiosis, stage (B2); and open flower (B3)]. In the cDNA libraries for B1, B2, and B3: 82718, 77061, and 91491 unigenes were assembled, respectively. A total of 34,445 unigene sequences and 128 pathways were annotated by KEGG pathway analysis. Several genes associated with nectar biosynthesis and nectary development were identified, and 8,955, 12,182, and 23,667 DEGs were identified in the B2 vs B1, B3 vs B1, and B3 vs. B2 comparisons. DEGs were involved in various metabolic processes, including flower development, nectar biosynthesis, and nectary development. According to the RNA-seq data, all 13 selected DEGs showed similar expression patterns after q-PCR analysis. Sucrose-phosphatase, galactinol-sucrose galactosyltransferase, and sucrose synthase played very important roles in nectar biosynthesis, and CRABS CLAW could potentially be involved in mediating nectary development. A significant number of simple sequence repeat and single nucleotide polymorphism markers were predicted in the Capsicum annuum sequences. The new results provide valuable genetic information about flower development in pepper.

11.
J Proteome Res ; 18(3): 982-994, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30650966

RESUMEN

Pepper ( Capsicum annuum L.) fruit development is a complex and genetically programmed process. In this study, we conducted integrative analysis of transcriptome and proteome profiles during pepper fruit development. A total of 23 349 transcripts and 5455 protein groups were identified in four fruit developmental stages of two pepper varieties. The numbers of transcripts and proteins identified were decreased gradually across fruit development, and the most significant changes in transcript and protein levels happened from the mature green (MG) to breaker (Br) stages. Poor correlation between differentially expressed transcript and differentially expressed protein profiles was observed during pepper fruit development. We then analyzed expression profiles of transcripts and proteins involved in cell wall metabolism, and capsanthin, tocopherol, and ascorbate biosynthetic pathways during fruit development, and identified key regulatory proteins in these pathways. We presented a dynamic picture of pepper fruit development via comprehensive analysis of transcriptome and proteome profiles at different fruit developmental stages and in different varieties, revealing the temporal specificity of key protein expression. Our report provides insight into the transcription and translation dynamics of pepper fruit development and a reference for other nonclimacteric species.


Asunto(s)
Capsicum/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Proteómica/métodos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/fisiología , Proteínas de Plantas/análisis , ARN Mensajero/análisis
12.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906076

RESUMEN

Mitochondrial transcription termination factors (mTERFs) regulate the expression of mitochondrial genes and are closely related to the function of the mitochondrion and chloroplast. In this study, the mTERF gene family in capsicum (Capsicum annuum L.) was identified and characterized through genomic and bioinformatic analyses. Capsicum was found to possess at least 35 mTERF genes (CamTERFs), which were divided into eight major groups following phylogenetic analysis. Analysis of CamTERF promoters revealed the presence of many cis-elements related to the regulation of cellular respiration and photosynthesis. In addition, CamTERF promoters contained cis-elements related to phytohormone regulation and stress responses. Differentially expressed genes in different tissues and developmental phases were identified using RNA-seq data, which revealed that CamTERFs exhibit various expression and co-expression patterns. Gene ontology (GO) annotations associated CamTERFs primarily with mitochondrion and chloroplast function and composition. These results contribute towards understanding the role of mTERFs in capsicum growth, development, and stress responses. Moreover, our data assist in the identification of CamTERFs with important functions, which opens avenues for future studies.


Asunto(s)
Capsicum , Regulación Neoplásica de la Expresión Génica/fisiología , Mitocondrias , Proteínas Mitocondriales , Proteínas de Plantas , Factores de Transcripción , Capsicum/genética , Capsicum/metabolismo , Estudio de Asociación del Genoma Completo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
13.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614571

RESUMEN

Heat stress (HS), caused by extremely high temperatures, is one of the most severe forms of abiotic stress in pepper. In the present study, we studied the transcriptome and metabolome of a heat-tolerant cultivar (17CL30) and a heat-sensitive cultivar (05S180) under HS. Briefly, we identified 5754 and 5756 differentially expressed genes (DEGs) in 17CL30 and 05S180, respectively. Moreover, we also identified 94 and 108 differentially accumulated metabolites (DAMs) in 17CL30 and 05S180, respectively. Interestingly, there were many common HS-responsive genes (approximately 30%) in both pepper cultivars, despite the expression patterns of these HS-responsive genes being different in both cultivars. Notably, the expression changes of the most common HS-responsive genes were typically much more significant in 17CL30, which might explain why 17CL30 was more heat tolerant. Similar results were also obtained from metabolome data, especially amino acids, organic acids, flavonoids, and sugars. The changes in numerous genes and metabolites emphasized the complex response mechanisms involved in HS in pepper. Collectively, our study suggested that the glutathione metabolic pathway played a critical role in pepper response to HS and the higher accumulation ability of related genes and metabolites might be one of the primary reasons contributing to the heat resistance.


Asunto(s)
Capsicum/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos , Proteínas de Plantas/genética , Aminoácidos/química , Capsicum/química , Capsicum/genética , Flavonoides/química , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Redes y Vías Metabólicas , Azúcares/química
17.
Hortic Res ; 10(7): uhad098, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426880

RESUMEN

Light quality and intensity can have a significant impact on plant health and crop productivity. Chlorophylls and carotenoids are classes of plant pigments that are responsible for harvesting light energy and protecting plants from the damaging effects of intense light. Our understanding of the role played by plant pigments in light sensitivity has been aided by light-sensitive mutants that change colors upon exposure to light of variable intensity. In this study, we conducted transcriptomic, metabolomic, and hormone analyses on a novel yellowing mutant of pepper (yl1) to shed light on the molecular mechanism that regulates the transition from green to yellow leaves in this mutant upon exposure to high-intensity light. Our results revealed greater accumulation of the carotenoid precursor phytoene and the carotenoids phytofluene, antheraxanthin, and zeaxanthin in yl1 compared with wild-type plants under high light intensity. A transcriptomic analysis confirmed that enzymes involved in zeaxanthin and antheraxanthin biosynthesis were upregulated in yl1 upon exposure to high-intensity light. We also identified a single basic helix-loop-helix (bHLH) transcription factor, bHLH71-like, that was differentially expressed and positively correlated with light intensity in yl1. Silencing of bHLH71-like in pepper plants suppressed the yellowing phenotype and led to reduced accumulation of zeaxanthin and antheraxanthin. We propose that the yellow phenotype of yl1 induced by high light intensity could be caused by an increase in yellow carotenoid pigments, concurrent with a decrease in chlorophyll accumulation. Our results also suggest that bHLH71-like functions as a positive regulator of carotenoid biosynthesis in pepper.

18.
Plant Sci ; 334: 111763, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37321305

RESUMEN

The leaf is an important plant organ and is closely related to agricultural yield. Photosynthesis plays a critical role in promoting plant growth and development. Understanding the mechanism of leaf photosynthesis regulation will help improve crop yield. In this study, the pepper yellowing mutant was used as the experimental material, and the photosynthetic changes of pepper leaves (yl1 and 6421) under different light intensities were analyzed by chlorophyll fluorimeter and photosynthesis meter. Changes in proteins and enrichment of phosphopeptides in pepper leaves were determined. The results showed that different light intensities had significant effects on the chlorophyll fluorescence and photosynthetic parameters of pepper leaves. The differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DEPPs) were mainly involved in photosynthesis, photosynthesis-antenna proteins, and carbon fixation in photosynthetic organisms. In yl1 leaves, the phosphorylation levels of photosynthesis and photosynthesis-antenna proteins LHCA2, LHCA3, PsbC, PsbO, and PsbP were lower under low light treatment, but significantly higher under high light intensity compared with wild-type leaves. In addition, many proteins involved in the carbon assimilation pathway, including TKT, Rubisco, and PGK, were phosphorylated, and this modification level was significantly higher in yl1 than in the wild type under high light intensity. These results provide a new perspective for studying the photosynthesis mechanism of pepper under different light intensities.


Asunto(s)
Fotosíntesis , Proteómica , Proteómica/métodos , Fotosíntesis/fisiología , Clorofila/metabolismo , Luz , Hojas de la Planta/metabolismo
19.
Nat Commun ; 14(1): 5487, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679363

RESUMEN

Pepper (Capsicum spp.) is one of the earliest cultivated crops and includes five domesticated species, C. annuum var. annuum, C. chinense, C. frutescens, C. baccatum var. pendulum and C. pubescens. Here, we report a pepper graph pan-genome and a genome variation map of 500 accessions from the five domesticated Capsicum species and close wild relatives. We identify highly differentiated genomic regions among the domesticated peppers that underlie their natural variations in flowering time, characteristic flavors, and unique resistances to biotic and abiotic stresses. Domestication sweeps detected in C. annuum var. annuum and C. baccatum var. pendulum are mostly different, and the common domestication traits, including fruit size, shape and pungency, are achieved mainly through the selection of distinct genomic regions between these two cultivated species. Introgressions from C. baccatum into C. chinense and C. frutescens are detected, including those providing genetic sources for various biotic and abiotic stress tolerances.


Asunto(s)
Capsicum , Piper nigrum , Capsicum/genética , Domesticación , Verduras , Frutas/genética , Productos Agrícolas/genética , Alcanfor , Mentol
20.
Am J Bot ; 99(2): e59-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22282113

RESUMEN

PREMISE OF THE STUDY: The redundancies in expressed sequence tags (ESTs) in the National Center for Biotechnology Information sequence database were used to identify and develop polymorphic simple sequence repeat (SSR) markers for pepper (Capsicum annuum). METHODS AND RESULTS: Sixty-eight polymorphic SSR loci were identified in the contigs (containing redundant ESTs) generated by assembling 118060 pepper ESTs from the public sequence database. Thirty-three SSR markers exhibited polymorphism among 31 pepper varieties, with alleles per SSR marker ranging from two to six. The mean observed and expected heterozygosity were 0.28 and 0.39, respectively. There were 18 SSR markers with a motif repeat number of less than five, accounting for 55% of the total. CONCLUSIONS: We demonstrated the value of mining the redundant sequences in public sequence databases for the development of polymorphic SSR markers, which can be used for marker-assisted breeding in pepper.


Asunto(s)
Capsicum/genética , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite , Polimorfismo Genético , Alineación de Secuencia , Alelos , ADN de Plantas/genética , Bases de Datos Genéticas , Frecuencia de los Genes , Sitios Genéticos , Heterocigoto , Motivos de Nucleótidos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA