RESUMEN
The climate change research community's shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise. In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change. In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region's imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.
RESUMEN
With rising demand for food and the threats posed by climate change, The Gambia faces significant challenges in ensuring sufficient and nutritious food for its population. To address these challenges, there is a need to increase domestic food production while limiting deforestation and land degradation. In this study, we modified the FABLE Calculator, a food and land-use system model, to focus on The Gambia to simulate scenarios for future food demand and increasing domestic food production. We considered the impacts of climate change on crops, the adoption of climate change adaptation techniques, as well as the potential of enhanced fertiliser use and irrigation to boost crop productivity, and assessed whether these measures would be sufficient to meet the projected increase in food demand. Our results indicate that domestic food production on existing cropland will not be sufficient to meet national food demand by 2050, leading to a significant supply-demand gap. However, investments in fertiliser availability and the development of sustainable irrigation infrastructure, coupled with climate change adaptation strategies like the adoption of climate-resilient crop varieties and optimised planting dates, could halve this gap. Addressing the remaining gap will require additional strategies, such as increasing imports, expanding cropland, or prioritising the production of domestic food crops over export crops. Given the critical role imports play in The Gambia's food supply, it is essential to ensure a robust flow of food imports by diversifying partners and addressing regional trade barriers. Our study highlights the urgent need for sustained investment and policy support to enhance domestic food production and food imports to secure sufficient and healthy food supplies amidst growing demand and climate change challenges. Supplementary Information: The online version contains supplementary material available at 10.1007/s12571-024-01444-1.
RESUMEN
How unprecedented changes in climatic conditions will impact yield and productivity of some crops and their response to existing stresses, abiotic and biotic interactions is a key global concern. Climate change can also alter natural species' abundance and distribution or favor invasive species, which in turn can modify ecosystem dynamics and the provisioning of ecosystem services. Basic anatomical differences in C3 and C4 plants lead to their varied responses to climate variations. In plants having a C3 pathway of photosynthesis, increased atmospheric carbon dioxide (CO2) positively regulates photosynthetic carbon (C) assimilation and depresses photorespiration. Legumes being C3 plants, they may be in a favorable position to increase biomass and yield through various strategies. This paper comprehensively presents recent progress made in the physiological and molecular attributes in plants with special emphasis on legumes under elevated CO2 conditions in a climate change scenario. A strategic research framework for future action integrating genomics, systems biology, physiology and crop modelling approaches to cope with changing climate is also discussed. Advances in sequencing and phenotyping methodologies make it possible to use vast genetic and genomic resources by deploying high resolution phenotyping coupled with high throughput multi-omics approaches for trait improvement. Integrated crop modelling studies focusing on farming systems design and management, prediction of climate impacts and disease forecasting may also help in planning adaptation. Hence, an integrated research framework combining genomics, plant molecular physiology, crop breeding, systems biology and integrated crop-soil-climate modelling will be very effective to cope with climate change.
RESUMEN
The COVID-19 pandemic continues to impact health and livelihoods in West Africa. Exposure of food system fragilities by the pandemic presents the opportunity for regional-specific reforms to deliver healthy diets for all and promote resilience to future shocks.