Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 156(1): 129-145, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36753032

RESUMEN

To date, cyclic electron flow around PSI (PSI-CEF) has been considered the primary (if not the only) mechanism accepted to adjust the ratio of linear vs cyclic electron flow that is essential to adjust the ratio of ATP/NADPH production needed for CO2 carboxylation. Here we provide a kinetic model showing that cyclic electron flow within PSII (PSII-CEF) is essential to account for the accelerating rate of decay in flash-induced oscillations of O2 yield as the PQ pool progressively reduces to PQH2. Previously, PSII-CEF was modeled by backward transitions using empirical Markov models like Joliot-Kok (J-K) type. Here, we adapted an ordinary differential equation methodology denoted RODE1 to identify which microstates within PSII are responsible for branching between PSII-CEF and Linear Electron Flow (LEF). We applied it to simulate the oscillations of O2 yield from both Chlorella ohadii, an alga that shows strong PSII-CEF attributed to high backward transitions, and Synechococcus elongatus sp. 7002, a widely studied model cyanobacterium. RODE2 simulations reveal that backward transitions occur in microstates that possess a QB- semiquinone prior to the flash. Following a flash that forms microstates populating (QAQB)2-, PSII-CEF redirects these two electrons to the donor side of PSII only when in the oxidized S2 and S3 states. We show that this backward transition pathway is the origin of the observed period-2 oscillations of flash O2 yield and contributes to the accelerated decay of period-4 oscillations. This newly added pathway improved RODE1 fits for cells of both S. elongatus and C. ohadii. RODE2 simulations show that cellular adaptation to high light intensity growth is due to a decrease in QB availability (empty or blocked by Q2-B), or equivalently due to a decrease in the difference in reduction potential relative to QA/QA-. PSII-CEF provides an alternative mechanism for rebalancing the NADPH:ATP ratio that occurs rapidly by adjusting the redox level of the PQ:PQH2 pool and is a necessary process for energy metabolism in aquatic phototrophs.


Asunto(s)
Chlorella , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Transporte de Electrón , Fotosíntesis , Electrones , Chlorella/metabolismo , NADP/metabolismo , Oxidación-Reducción , Luz , Adenosina Trifosfato/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo
2.
New Phytol ; 234(3): 934-945, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35211975

RESUMEN

Paulinella represents the only known case of an independent primary plastid endosymbiosis, outside Archaeplastida, that occurred c. 120 (million years ago) Ma. These photoautotrophs grow very slowly in replete culture medium with a doubling time of 6-7 d at optimal low light, and are highly sensitive to photodamage under moderate light levels. We used genomic and biophysical methods to investigate the extreme slow growth rate and light sensitivity of Paulinella, which are key to photosymbiont integration. All photosystem II (PSII) genes except psb28-2 and all cytochrome b6 f complex genes except petM and petL are present in Paulinella micropora KR01 (hereafter, KR01). Biophysical measurements of the water oxidation complex, variable chlorophyll fluorescence, and photosynthesis-irradiance curves show no obvious evidence of PSII impairment. Analysis of photoacclimation under high-light suggests that although KR01 can perform charge separation, it lacks photoprotection mechanisms present in cyanobacteria. We hypothesize that Paulinella species are restricted to low light environments because they are deficient in mitigating the formation of reactive oxygen species formed within the photosystems under peak solar intensities. The finding that many photoprotection genes have been lost or transferred to the host-genome during endosymbiont genome reduction, and may lack light-regulation, is consistent with this hypothesis.


Asunto(s)
Amoeba , Cromatóforos , Amoeba/genética , Luz , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II , Filogenia
3.
Photosynth Res ; 151(1): 83-102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34402027

RESUMEN

Historically, two modeling approaches have been developed independently to describe photosynthetic electron transport (PET) from water to plastoquinone within Photosystem II (PSII): Markov models account for losses from finite redox transition probabilities but predict no reaction kinetics, and ordinary differential equation (ODE) models account for kinetics but not for redox inefficiencies. We have developed an ODE mathematical framework to calculate Markov inefficiencies of transition probabilities as defined in Joliot-Kok-type catalytic cycles. We adapted a previously published ODE model for PET within PSII that accounts for 238 individual steps to enable calculation of the four photochemical inefficiency parameters (miss, double hit, inactivation, backward transition) and the four redox accumulation states (S-states) that are predicted by the most advanced of the Joliot-Kok-type models (VZAD). Using only reaction kinetic parameters without other assumptions, the RODE-calculated time-averaged (e.g., equilibrium) inefficiency parameters and equilibrium S-state populations agree with those calculated by time-independent Joliot-Kok models. RODE also predicts their time-dependent values during transient photochemical steps for all 96 microstates involving PSII redox cofactors. We illustrate applications to two cyanobacteria, Arthrospira maxima and Synechococcus sp. 7002, where experimental data exists for the inefficiency parameters and the S-state populations, and historical data for plant chloroplasts as benchmarks. Significant findings: RODE predicts the microstates responsible for period-4 and period-2 oscillations of O2 and fluorescence yields and the four inefficiency parameters; the latter parameters are not constant for each S state nor in time, in contrast to predictions from Joliot-Kok models; some of the recombination pathways that contribute to the backward transition parameter are identified and found to contribute when their rates exceed the oxidation rate of the terminal acceptor pool (PQH2); prior reports based on the assumptions of Joliot-Kok parameters may require reinterpretation.


Asunto(s)
Oxígeno , Complejo de Proteína del Fotosistema II , Transporte de Electrón , Cinética , Luz , Oxidación-Reducción , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA