Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(3): 353-364, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625233

RESUMEN

Inhibitors of the mammalian target of rapamycin (mTOR) have been proposed to improve vaccine responses, especially in the elderly. Accordingly, testing mTOR inhibitors (such as Sirolimus) and other geroprotective drugs might be considered a key strategy to improve overall health resilience of aged populations. In this respect, Sirolimus (also known as rapamycin) is of great interest, in consideration of the fact that it is extensively used in routine therapy and in clinical studies for the treatment of several diseases. Recently, Sirolimus has been considered in laboratory and clinical studies aimed to find novel protocols for the therapy of hemoglobinopathies (e.g. ß-Thalassemia). The objective of the present study was to analyse the activity of CD4+ and CD8+ T cells in ß-Thalassemia patients treated with Sirolimus, taking advantages from the availability of cellular samples of the NCT03877809 clinical trial. The approach was to verify IFN-γ releases following stimulation of peripheral blood mononuclear cells (PBMCs) to stimulatory CEF and CEFTA peptide pools, stimulatory for CD4+ and CD8+ T cells, respectively. The main results of the present study are that treatment of ß-Thalassemia patients with Sirolimus has a positive impact on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ following stimulation with antigenic stimuli present in immunological memory. These data are to our knowledge novel and in our opinion of interest, in consideration of the fact that ß-Thalassemia patients are considered prone to immune deficiency.


Asunto(s)
Sirolimus , Talasemia beta , Anciano , Humanos , Talasemia beta/tratamiento farmacológico , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614221

RESUMEN

The human homologue of mouse Ly-1 antibody reactive clone protein (LYAR) is a putative novel regulator of γ-globin gene transcription. The LYAR DNA-binding motif (5'-GGTTAT-3') is located within the 5'-UTR of the Aγ-globin gene. The LYAR rs368698783 (G>A) polymorphism is present in ß-thalassemia patients and decreases the LYAR binding efficiency to the Aγ-globin gene. The objective of this study was to stratify ß-thalassemia patients with respect to the rs368698783 (G>A) polymorphism and to verify whether their erythroid precursor cells (ErPCs) differentially respond in vitro to selected fetal hemoglobin (HbF) inducers. The rs368698783 (G>A) polymorphism was detected by DNA sequencing, hemoglobin production by HPLC, and accumulation of globin mRNAs by RT-qPCR. We found that the LYAR rs368698783 (G>A) polymorphism is associated with high basal and induced production of fetal hemoglobin in ß-thalassemia patients. The most striking association was found using rapamycin as an HbF inducer. The results presented here could be considered important not only for basic biomedicine but also in applied translational research for precision medicine in personalized therapy of ß-thalassemia. Accordingly, our data suggest that the rs368698783 polymorphism might be considered among the parameters useful to recruit patients with the highest probability of responding to in vivo hydroxyurea (HU) treatment.


Asunto(s)
Células Precursoras Eritroides , Talasemia beta , Humanos , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/análisis , gamma-Globinas/genética , gamma-Globinas/metabolismo , Proteínas Nucleares/genética , Polimorfismo Genético
3.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894732

RESUMEN

The ß-thalassemias are hereditary monogenic diseases characterized by a low or absent production of adult hemoglobin and excess in the content of α-globin. This excess is cytotoxic for the erythroid cells and responsible for the ß-thalassemia-associated ineffective erythropoiesis. Therefore, the decrease in excess α-globin is a relevant clinical effect for these patients and can be realized through the induction of fetal hemoglobin, autophagy, or both. The in vivo effects of sirolimus (rapamycin) and analogs on the induction of fetal hemoglobin (HbF) are of key importance for therapeutic protocols in a variety of hemoglobinopathies, including ß-thalassemias. In this research communication, we report data showing that a decrease in autophagy-associated p62 protein, increased expression of ULK-1, and reduction in excess α-globin are occurring in erythroid precursors (ErPCs) stimulated in vitro with low dosages of sirolimus. In addition, increased ULK-1 mRNA content and a decrease in α-globin content were found in ErPCs isolated from ß-thalassemia patients recruited for the NCT03877809 clinical trial and treated with 0.5-2 mg/day sirolimus. Our data support the concept that autophagy, ULK1 expression, and α-globin chain reduction should be considered important endpoints in sirolimus-based clinical trials for ß-thalassemias.


Asunto(s)
Talasemia beta , Adulto , Humanos , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética , Talasemia beta/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Hemoglobina Fetal , Globinas alfa/genética , Globinas alfa/metabolismo , ARN Mensajero/genética , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/genética
4.
Molecules ; 29(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202591

RESUMEN

Induction of fetal hemoglobin (HbF) is highly beneficial for patients carrying ß-thalassemia, and novel HbF inducers are highly needed. Here, we describe a new class of promising HbF inducers characterized by an isoxazole chemical skeleton and obtained through modification of two natural molecules, geldanamycin and radicicol. After preliminary biological assays based on benzidine staining and RT-qPCR conducted on human erythroleukemic K562 cells, we employed erythroid precursors cells (ErPCs) isolated from ß-thalassemic patients. ErPCs weretreated with appropriate concentrations of isoxazole derivatives. The accumulation of globin mRNAs was studied by RT-qPCR, and hemoglobin production by HPLC. We demonstrated the high efficacy of isozaxoles in inducing HbF. Most of these derivatives displayed an activity similar to that observed using known HbF inducers, such as hydroxyurea (HU) or rapamycin; some of the analyzed compounds were able to induce HbF with more efficiency than HU. All the compounds were active in reducing the excess of free α-globin in treated ErPCs. All the compounds displayed a lack of genotoxicity. These novel isoxazoles deserve further pre-clinical study aimed at verifying whether they are suitable for the development of therapeutic protocols for ß-thalassemia.


Asunto(s)
Hemoglobina Fetal , Talasemia beta , Humanos , Hemoglobina Fetal/genética , Células Precursoras Eritroides , Talasemia beta/tratamiento farmacológico , Bioensayo , Hidroxiurea/farmacología , Isoxazoles
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948226

RESUMEN

ß-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding ß-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for ß-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from ß-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine ß-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of ß-thalassemia.


Asunto(s)
Alcaloides de Cinchona/farmacología , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/biosíntesis , Talasemia beta/metabolismo , Células Precursoras Eritroides/patología , Humanos , Células K562 , Talasemia beta/tratamiento farmacológico
6.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050052

RESUMEN

The screening of chemical libraries based on cellular biosensors is a useful approach to identify new hits for novel therapeutic targets involved in rare genetic pathologies, such as ß-thalassemia and sickle cell disease. In particular, pharmacologically mediated stimulation of human γ-globin gene expression, and increase of fetal hemoglobin (HbF) production, have been suggested as potential therapeutic strategies for these hemoglobinopathies. In this article, we screened a small chemical library, constituted of 150 compounds, using the cellular biosensor K562.GR, carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and ß-globin gene promoters, respectively. Then the identified compounds were analyzed as HbF inducers on primary cell cultures, obtained from ß-thalassemia patients, confirming their activity as HbF inducers, and suggesting these molecules as lead compounds for further chemical and biological investigations.


Asunto(s)
Anemia de Células Falciformes/sangre , Descubrimiento de Drogas/métodos , Hemoglobina Fetal/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Talasemia beta/sangre , Anemia de Células Falciformes/tratamiento farmacológico , Técnicas Biosensibles/métodos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Células K562 , Proteínas Luminiscentes/genética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Globinas beta/genética , Talasemia beta/tratamiento farmacológico , gamma-Globinas/genética , Proteína Fluorescente Roja
7.
Anal Bioanal Chem ; 411(29): 7699-7707, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31300855

RESUMEN

Recent studies have identified and characterized a novel putative transcriptional repressor site in a 5' untranslated region of the Aγ-globin gene that interacts with the Ly-1 antibody reactive clone (LYAR) protein. LYAR binds the 5'-GGTTAT-3' site of the Aγ-globin gene, and this molecular interaction causes repression of gene transcription. In ß-thalassemia patients, a polymorphism has been demonstrated (the rs368698783 G>A polymorphism) within the 5'-GGTTAT-3' LYAR-binding site of the Aγ-globin gene. The major results gathered from surface plasmon resonance based biospecific interaction analysis (SPR-BIA) studies (using crude nuclear extracts, LYAR-enriched lysates, and recombinant LYAR) support the concept that the rs368698783 G>A polymorphism of the Aγ-globin gene attenuates the efficiency of LYAR binding to the LYAR-binding site. This conclusion was fully confirmed by a molecular docking analysis. This might lead to a very important difference in erythroid cells from ß-thalassemia patients in respect to basal and induced levels of production of fetal hemoglobin. The novelty of the reported SPR-BIA method is that it allows the characterization and validation of the altered binding of a key nuclear factor (LYAR) to mutated LYAR-binding sites. These results, in addition to theoretical implications, should be considered of interest in applied pharmacology studies as a basis for the screening of drugs able to inhibit LYAR-DNA interactions. This might lead to the identification of molecules facilitating induced increase of γ-globin gene expression and fetal hemoglobin production in erythroid cells, which is associated with possible reduction of the clinical severity of the ß-thalassemia phenotype. Graphical abstract.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Polimorfismo Genético , Resonancia por Plasmón de Superficie/métodos , Talasemia beta/genética , gamma-Globinas/genética , Sitios de Unión , Células HEK293 , Humanos , Células K562 , Simulación del Acoplamiento Molecular , Unión Proteica , gamma-Globinas/metabolismo
8.
Anal Bioanal Chem ; 411(29): 7669-7680, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31273412

RESUMEN

There is a general agreement that pharmacologically mediated stimulation of human γ-globin gene expression and increase of production of fetal hemoglobin (HbF) is a potential therapeutic approach in the experimental therapy of ß-thalassemia and sickle cell anemia. Here, we report the development and characterization of cellular biosensors carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and ß-globin gene promoters, respectively; these dual-reporter cell lines are suitable to identify the induction ability of screened compounds on the transcription in erythroid cells of γ-globin and ß-globin genes by FACS with efficiency and reproducibility. Our experimental system allows to identify (a) HbF inducers stimulating to different extent the activity of the γ-globin gene promoter and (b) molecules that stimulate also the activity of the ß-globin gene promoter. A good correlation does exist between the results obtained by using the EGFP/RFP clones and experiments performed on erythroid precursor cells from ß-thalassemic patients, confirming that this experimental system can be employed for high-throughput screening (HTS) analysis. Finally, we have demonstrated that this dual-reporter cell line can be used for HTS in 384-well plate, in order to identify novel HbF inducers for the therapy of ß-thalassemia and sickle cell anemia. Graphical abstract.


Asunto(s)
Técnicas Biosensibles , Diferenciación Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Regiones Promotoras Genéticas , Transcripción Genética , Globinas beta/genética , gamma-Globinas/genética , Eritrocitos/citología , Hemoglobina Fetal/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Células K562 , Reproducibilidad de los Resultados
9.
BMC Med Genet ; 18(1): 93, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851297

RESUMEN

BACKGROUND: Increase of the expression of γ-globin gene and high production of fetal hemoglobin (HbF) in ß-thalassemia patients is widely accepted as associated with a milder or even asymptomatic disease. The search for HbF-associated polymorphisms (such as the XmnI, BCL11A and MYB polymorphisms) has recently gained great attention, in order to stratify ß-thalassemia patients with respect to expectancy of the first transfusion, need for annual intake of blood, response to HbF inducers (the most studied of which is hydroxyurea). METHODS: Aγ-globin gene sequencing was performed on genomic DNA isolated from a total of 75 ß-thalassemia patients, including 31 ß039/ß039, 33 ß039/ß+IVSI-110, 9 ß+IVSI-110/ß+IVSI-110, one ß0IVSI-1/ß+IVSI-6 and one ß039/ß+IVSI-6. RESULTS: The results show that the rs368698783 polymorphism is present in ß-thalassemia patients in the 5'UTR sequence (+25) of the Aγ-globin gene, known to affect the LYAR (human homologue of mouse Ly-1 antibody reactive clone) binding site 5'-GGTTAT-3'. This Aγ(+25 G->A) polymorphism is associated with the Gγ-globin-XmnI polymorphism and both are linked with the ß039-globin gene, but not with the ß+IVSI-110-globin gene. In agreement with the expectation that this mutation alters the LYAR binding activity, we found that the Aγ(+25 G->A) and Gγ-globin-XmnI polymorphisms are associated with high HbF in erythroid precursor cells isolated from ß039/ß039 thalassemia patients. CONCLUSIONS: As a potential explanation of our findings, we hypothesize that in ß-thalassemia the Gγ-globin-XmnI/Aγ-globin-(G->A) genotype is frequently under genetic linkage with ß0-thalassemia mutations, but not with the ß+-thalassemia mutation here studied (i.e. ß+IVSI-110) and that this genetic combination has been selected within the population of ß0-thalassemia patients, due to functional association with high HbF. Here we describe the characterization of the rs368698783 (+25 G->A) polymorphism of the Aγ-globin gene associated in ß039 thalassemia patients with high HbF in erythroid precursor cells.


Asunto(s)
Hemoglobina Fetal/biosíntesis , Polimorfismo Genético , Talasemia beta/genética , gamma-Globinas/genética , Sitios de Unión/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Desequilibrio de Ligamiento , Masculino , Proteínas Nucleares/metabolismo , Mutación Puntual , Análisis de Secuencia de ADN , gamma-Globinas/metabolismo
10.
Int J Mol Sci ; 18(12)2017 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-29186860

RESUMEN

The involvement of microRNAs in the control of repressors of human γ-globin gene transcription has been firmly demonstrated, as described for the miR-486-3p mediated down-regulation of BCL11A. On the other hand, we have reported that miR-210 is involved in erythroid differentiation and, possibly, in γ-globin gene up-regulation. In the present study, we have identified the coding sequence of BCL11A as a possible target of miR-210. The following results sustain this hypothesis: (a) interactions between miR-210 and the miR-210 BCL11A site were demonstrated by SPR-based biomolecular interaction analysis (BIA); (b) the miR-210 site of BCL11A is conserved through molecular evolution; (c) forced expression of miR-210 leads to decrease of BCL11A-XL and increase of γ-globin mRNA content in erythroid cells, including erythroid precursors isolated from ß-thalassemia patients. Our study suggests that the coding mRNA sequence of BCL11A can be targeted by miR-210. In addition to the theoretical point of view, these data are of interest from the applied point of view, supporting a novel strategy to inhibit BCL11A by mimicking miR-210 functions, accordingly with the concept supported by several papers and patent applications that inhibition of BCL11A is an efficient strategy for fetal hemoglobin induction in the treatment of ß-thalassemia.


Asunto(s)
Proteínas Portadoras/genética , Redes Reguladoras de Genes , MicroARNs/genética , Proteínas Nucleares/genética , gamma-Globinas/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Células Precursoras Eritroides/metabolismo , Humanos , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras , Talasemia beta/genética , gamma-Globinas/metabolismo
11.
J Transl Med ; 14: 255, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27590532

RESUMEN

BACKGROUND: Cellular biobanking is a key resource for collaborative networks planning to use same cells in studies aimed at solving a variety of biological and biomedical issues. This approach is of great importance in studies on ß-thalassemia, since the recruitment of patients and collection of specimens can represent a crucial and often limiting factor in the experimental planning. METHODS: Erythroid precursor cells were obtained from 72 patients, mostly ß-thalassemic, expanded and cryopreserved. Expression of globin genes was analyzed by real time RT-qPCR. Hemoglobin production was studied by HPLC. RESULTS: In this paper we describe the production and validation of a Thal-Biobank constituted by expanded erythroid precursor cells from ß-thalassemia patients. The biobanked samples were validated for maintenance of their phenotype after (a) cell isolation from same patients during independent phlebotomies, (b) freezing step in different biobanked cryovials, (c) thawing step and analysis at different time points. Reproducibility was confirmed by shipping the frozen biobanked cells to different laboratories, where the cells were thawed, cultured and analyzed using the same standardized procedures. The biobanked cells were stratified on the basis of their baseline level of fetal hemoglobin production and exposed to fetal hemoglobin inducers. CONCLUSION: The use of biobanked cells allows stratification of the patients with respect to fetal hemoglobin production and can be used for determining the response to the fetal hemoglobin inducer hydroxyurea and to gene therapy protocols with reproducible results.


Asunto(s)
Bancos de Muestras Biológicas , Talasemia beta/patología , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Criopreservación , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyetina/farmacología , Hemoglobina Fetal/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Cinética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
13.
Exp Hematol ; 129: 104128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939833

RESUMEN

During the recent coronavirus disease 2019 (COVID-19) pandemic several patients with ß-thalassemia have been infected by severe acute respiratory syndrome coronavirus (SARS-CoV-2), and most patients were vaccinated against SARS-CoV-2. Recent studies demonstrate an impact of SARS-CoV-2 infection on the hematopoietic system. The main objective of this study was to verify the effects of exposure of erythroid precursor cells (ErPCs) from patients with ß-thalassemia to SARS-CoV-2 spike protein (S-protein) and the BNT162b2 vaccine. Erythropoietin (EPO)-cultured ErPCs have been either untreated or treated with S-protein or BNT162b2 vaccine. The employed ErPCs were from a ß-thalassemia cellular Biobank developed before the COVID-19 pandemic. The genotypes were ß+-IVSI-110/ß+-IVSI-110 (one patient),  ß039/ß+-IVSI-110 (3 patients), and ß039/ ß039 (2 patients). After treatment with S-protein or BNT162b2 for 5 days, lysates were analyzed by high performance liquid chromatography (HPLC), for hemoglobin production, and isolated RNA was assayed by RT-qPCR, for detection of globin gene expression. The main conclusions of the results obtained are that SARS-CoV-2 S-protein and BNT162b2 vaccine (a) inhibit fetal hemoglobin (HbF) production by ß-thalassemic ErPCs and (b) inhibit γ-globin mRNA accumulation. In addition, we have performed in silico studies suggesting a high affinity of S-protein to HbF. Remarkably, the binding interaction energy of fetal hemoglobin to S-protein was comparable with that of angiotensin-converting enzyme 2 (ACE2). Our results are consistent with the hypothesis of a relevant impact of SARS-CoV-2 infection and COVID-19 vaccination on the hematopoietic system.


Asunto(s)
COVID-19 , Eritropoyetina , Vacunas , Talasemia beta , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Vacuna BNT162 , Talasemia beta/genética , Células Precursoras Eritroides , Vacunas contra la COVID-19 , Hemoglobina Fetal , Pandemias , SARS-CoV-2 , Expresión Génica , Anticuerpos Antivirales
14.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731008

RESUMEN

Background/Objectives: in ß-thalassemia, important clinical complications are caused by the presence of free α-globin chains in the erythroid cells of ß-thalassemia patients. These free α-globin chains are present in excess as a result of the lack of ß-globin chains to bind with; they tend to aggregate and precipitate, causing deleterious effects and overall cytotoxicity, maturation arrest of the erythroid cells and, ultimately, ineffective erythropoiesis. The chaperone protein α-hemoglobin-stabilizing protein (AHSP) reversibly binds with free α-globin; the resulting AHSP-αHb complex prevents aggregation and precipitation. Sirolimus (rapamycin) has been previously demonstrated to induce expression of fetal hemoglobin and decrease the excess of free α-globin chain in the erythroid cells of ß-thalassemia patients. The objective of this study was to verify whether sirolimus is also able to upregulate AHSP expression in erythroid precursor cells (ErPCs) isolated from ß-thalassemia patients. Methods: the expression of AHSP genes was analyzed by measuring the AHSP mRNA content by real-time quantitative PCR (RT-qPCR) and the AHSP protein production by Western blotting. Results: AHSP gene expression was found to be higher in ErPCs of ß-thalassemia patients in comparison to ErPCs isolated from healthy subjects. In addition, AHSP expression was further induced by treatment of ß-thalassemia ErPCs with sirolimus. Finally, AHSP mRNA was expressed at an increased level in ErPCs of sirolimus-treated ß-thalassemia patients participating in the NCT03877809 Sirthalaclin clinical trial. Conclusions: this exploratory study suggests that AHSP expression should be considered as an endpoint in clinical trials based on sirolimus.

15.
Hematol Rep ; 15(3): 432-439, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37489374

RESUMEN

The ß-thalassemias are a group of monogenic hereditary hematological disorders caused by deletions and/or mutations of the ß-globin gene, leading to low or absent production of adult hemoglobin (HbA). For ß-thalassemia, sirolimus has been under clinical consideration in two trials (NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination has been reported in organ recipient patients treated with the immunosuppressant sirolimus. Therefore, there was some concern regarding the fact that monotherapy with sirolimus would reduce the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our opinion, this case report should stimulate further studies on ß-thalassemia patients under sirolimus monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive use of sirolimus for the treatment of other human pathologies (for instance, in organ transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this case report study might be of general interest, as large numbers of patients are currently under sirolimus treatment.

16.
Genes (Basel) ; 14(10)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895276

RESUMEN

The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from ß-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of ß-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.


Asunto(s)
Talasemia beta , gamma-Globinas , Humanos , gamma-Globinas/genética , gamma-Globinas/metabolismo , Talasemia beta/genética , Plicamicina/farmacología , Proteínas Represoras/genética , Factores de Transcripción/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética
17.
Genes (Basel) ; 14(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36980829

RESUMEN

One of the most relevant pathophysiological hallmarks of ß-thalassemia is the accumulation of toxic α-globin chains inside erythroid cells, which is responsible for their premature death (hemolysis). In this context, the availability of an experimental model system mimicking the excess in α-globin chain production is still lacking. The objective of the present study was to produce and characterize K562 cellular clones forced to produce high amounts of α-globin, in order to develop an experimental model system suitable for studies aimed at the reduction of the accumulation of toxic α-globin aggregates. In the present study, we produced and characterized K562 cellular clones that, unlike the original K562 cell line, stably produced high levels of α-globin protein. As expected, the obtained clones had a tendency to undergo apoptosis that was proportional to the accumulation of α-globin, confirming the pivotal role of α-globin accumulation in damaging erythroid cells. Interestingly, the obtained clones seemed to trigger autophagy spontaneously, probably to overcome the accumulation/toxicity of the α-globin. We propose this new model system for the screening of pharmacological agents able to activate the full program of autophagy to reduce α-globin accumulation, but the model may be also suitable for new therapeutical approaches targeted at the reduction of the expression of the α-globin gene.


Asunto(s)
Autofagia , Globinas alfa , Humanos , Globinas alfa/biosíntesis , Globinas alfa/genética , Autofagia/genética , Biomarcadores , Células Clonales , Células K562
18.
Biology (Basel) ; 12(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37759601

RESUMEN

In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from ß-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of ß-thalassemia. In fact, high levels of HbF are known to be highly beneficial for ß-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from ß-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on ß-thalassemia patients.

19.
Ann Hematol ; 91(8): 1201-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22460946

RESUMEN

Gene therapy might fall short in achieving a complete reversion of the ß-thalassemic phenotype due to current limitations in vector design and myeloablative regimen. Following gene transfer, all or a large proportion of erythroid cells might express suboptimal levels of ß-globin, impairing the therapeutic potential of the treatment. Our aim was to evaluate whether, in absence of complete reversion of the ß-globin phenotype upon gene transfer, it is possible to use fetal hemoglobin induction to eliminate the residual α-globin aggregates and achieve normal levels of hemoglobin. Transgenic K562 cell lines and erythroid precursor cells from ß(0)39-thalassemia patients were employed. Gene therapy was performed with the lentiviral vector T9W. Induction of fetal hemoglobin was obtained using mithramycin. Levels of mRNA and hemoglobins were determined by qRT-PCR and HPLC. First, we analyzed the effect of mithramycin on K562 transgenic cell lines harboring different copies of a lentiviral vector carrying the human ß-globin gene, showing that γ-globin mRNA expression and HbF production can be induced in the presence of high levels of ß-globin gene expression and HbA accumulation. We then treated erythroid progenitor cells from ß-thalassemic patients with T9W, which expresses the human ß-globin gene and mithramycin separately or in combination. When transduction with our lentiviral vector is insufficient to completely eliminate the unpaired α-globin chains, combination of ß-globin gene transfer therapy together with fetal hemoglobin induction might be very efficacious to remove the excess of α-globin proteins in thalassemic erythroid progenitor cells.


Asunto(s)
Células Precursoras Eritroides/efectos de los fármacos , Hemoglobina Fetal/metabolismo , Terapia Genética , Hemoglobina A/genética , Plicamicina/uso terapéutico , Talasemia beta/terapia , Adulto , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Células Cultivadas , Terapia Combinada/métodos , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/fisiología , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Células HEK293 , Hemoglobina A/metabolismo , Humanos , Células K562 , Plicamicina/farmacología , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/metabolismo
20.
Genes (Basel) ; 13(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36292612

RESUMEN

Gene editing (GE) is an efficient strategy for correcting genetic mutations in monogenic hereditary diseases, including ß-thalassemia. We have elsewhere reported that CRISPR-Cas9-based gene editing can be employed for the efficient correction of the ß039-thalassemia mutation. On the other hand, robust evidence demonstrates that the increased production of fetal hemoglobin (HbF) can be beneficial for patients with ß-thalassemia. The aim of our study was to verify whether the de novo production of adult hemoglobin (HbA) using CRISPR-Cas9 gene editing can be combined with HbF induction protocols. The gene editing of the ß039-globin mutation was obtained using a CRISPR-Cas9-based experimental strategy; the correction of the gene sequence and the transcription of the corrected gene were analyzed by allele-specific droplet digital PCR and RT-qPCR, respectively; the relative content of HbA and HbF was studied by high-performance liquid chromatography (HPLC) and Western blotting. For HbF induction, the repurposed drug rapamycin was used. The data obtained conclusively demonstrate that the maximal production of HbA and HbF is obtained in GE-corrected, rapamycin-induced erythroid progenitors isolated from ß039-thalassemia patients. In conclusion, GE and HbF induction might be used in combination in order to achieve the de novo production of HbA together with an increase in induced HbF.


Asunto(s)
Talasemia , Talasemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edición Génica/métodos , Talasemia beta/genética , Talasemia beta/terapia , Sistemas CRISPR-Cas/genética , Células Eritroides/metabolismo , Talasemia/genética , Sirolimus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA