Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Dis Aquat Organ ; 144: 89-98, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33830072

RESUMEN

Amphibians are globally threatened by emerging infectious diseases, and ranaviruses are among the most concerning pathogens to threaten species in the wild. We sampled for ranaviruses in wild amphibians at 8 sites in Costa Rica, spanning broad climatic zones and taxonomic associations. Seven of these sites are inhabited by highly threatened amphibian species that persist at low global population sizes after population declines due to amphibian chytridiomycosis. One of the surveyed sites is occupied by an introduced amphibian species, which is relatively rare in Central America but may be an important pathway for long-distance transport of ranaviruses. We detected ranavirus using quantitative polymerase chain reaction in 16.3% of the 243 individuals and among 5 of our 8 sites, but not at the site with the introduced species. Infection prevalence varied among species and sites, but not with mean annual temperature or mean annual precipitation. Infection intensity did not vary with species, site, temperature, or precipitation. Our results show that ranavirus infection is spatially widespread in Costa Rica, affecting a broad range of host species, and occurs across climatic zones-though we encountered no mortality or morbidity in our sampled species. Ranaviruses are known to cause intermittent mass mortality in amphibian populations, and the threatened species sampled here are likely vulnerable to population impacts from emerging ranaviruses. Therefore, we believe the potential impacts of ranaviruses on amphibian populations in tropical regions have likely been underestimated, and that they should be viewed as a potential major stressor to threatened amphibians in tropical regions.


Asunto(s)
Infecciones por Virus ADN , Ranavirus , Anfibios , Animales , América Central , Costa Rica/epidemiología , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/veterinaria
2.
Ecohealth ; 18(1): 134-144, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34184170

RESUMEN

Introduced pathogens can alter the geographic distribution of susceptible host species. For example, Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has been linked to the global decline and extinction of numerous amphibian species during the last four decades. A growing number of studies have described the distribution of Bd and susceptible hosts across the globe; however, knowledge on how Bd may shape the climatic niche of susceptible species is still missing. We estimated the effect of Bd on the geographic distribution and niche dynamics of the critically endangered lowland robber frog (Craugastor ranoides) in Costa Rica. We found a reduction of 98% in the geographic range of this species by 1995, following the epizootic outbreaks of Bd that affected Costa Rica in the 1980 and early 1990s. We also quantified niche contraction and found that the species is currently restricted to dry and warm environments that have been considered unsuitable for Bd. Our results contribute to the understanding of how emerging pathogens shape the climatic niches and geographic distribution of susceptible species.


Asunto(s)
Anuros , Batrachochytrium/patogenicidad , Especies en Peligro de Extinción , Micosis/veterinaria , Animales , Anuros/microbiología , Clima , Brotes de Enfermedades/veterinaria , Micosis/microbiología
3.
Ecol Evol ; 9(8): 4917-4930, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031954

RESUMEN

Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host-pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host-pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries.

4.
PLoS One ; 14(12): e0208969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31821326

RESUMEN

Emerging infectious diseases are a growing threat to biodiversity worldwide. Outbreaks of the infectious disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), are implicated in the decline and extinction of numerous amphibian species. In Costa Rica, a major decline event occurred in 1987, more than two decades before this pathogen was discovered. The loss of many species in Costa Rica is assumed to be due to Bd-epizootics, but there are few studies that provide data from amphibians in the time leading up to the proposed epizootics. In this study, we provide new data on Bd infection rates of amphibians collected throughout Costa Rica, in the decades prior to the epizootics. We used a quantitative PCR assay to test for Bd presence in 1016 anuran museum specimens collected throughout Costa Rica. The earliest specimen that tested positive for Bd was collected in 1964. Across all time periods, we found an overall infection rate (defined as the proportion of Bd-positive individuals) of 4%. The number of infected individuals remained relatively low across all species tested and the range of Bd-positive specimens was shown to be geographically constrained up until the 1980s; when epizootics are hypothesized to have occurred. After that time, infection rate increased three-fold, and the range of specimens tested positive for Bd increased, with Bd-positive specimens collected across the entire country. Our results suggest that Bd dynamics in Costa Rica are more complicated than previously thought. The discovery of Bd's presence in the country preceding massive declines leads to a number of different hypotheses: 1) Bd invaded Costa Rica earlier than previously known, and spread more slowly than previously reported; 2) Bd invaded multiple times and faded out; 3) an endemic Bd lineage existed; 4) an earlier Bd lineage evolved into the current Bd lineage or hybridized with an invasive lineage; or 5) an earlier Bd lineage went extinct and a new invasion event occurred causing epizootics. To help visualize areas where future studies should take place, we provide a Bd habitat suitability model trained with local data. Studies that provide information on genetic lineages of Bd are needed to determine the most plausible spatial-temporal, host-pathogen dynamics that could best explain the epizootics resulting in amphibian declines in Costa Rica and throughout Central America.


Asunto(s)
Anfibios/microbiología , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/microbiología , Quitridiomicetos/patogenicidad , Enfermedades Transmisibles Emergentes/historia , Enfermedades Transmisibles Emergentes/veterinaria , Brotes de Enfermedades/veterinaria , Enfermedades de los Animales/historia , Animales , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Costa Rica/epidemiología , Historia del Siglo XX , Historia del Siglo XXI , Interacciones Huésped-Patógeno
5.
Nat Ecol Evol ; 7(10): 1587-1588, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567920
6.
Ecohealth ; 11(4): 593-602, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25212725

RESUMEN

Population declines and extinctions of numerous species of amphibians, especially stream-breeding frogs, have been linked to the emerging infectious disease chytridiomycosis, caused by the chytrid fungus, Batrachochytrium dendrobatidis. In Central America, most of the 34 species of the Craugastor punctariolus species group have disappeared in recent years in high- and low-elevation rainforests. Distribution models for B. dendrobatidis and the continuous presence of the extirpated stream-dwelling species, Craugastor ranoides, in the driest site of Costa Rica (Santa Elena Peninsula), suggest that environmental conditions might restrict the growth and development of B. dendrobatidis, existing as a refuge from chytridiomycosis-driven extinction. We conducted field surveys to detect and quantify the pathogen using Real-time PCR in samples from 15 species of frogs in two locations of tropical dry forest. In Santa Elena Peninsula, we swabbed 310 frogs, and only one sample of the species, C. ranoides, tested positive for B. dendrobatidis (prevalence <0.1%). In Santa Rosa Station, we swabbed 100 frogs, and nine samples from three species tested positive (prevalence = 9.0%). We failed to detect signs of chytridiomycosis in any of the 410 sampled frogs, and low quantities of genetic equivalents (between 0 and 1073) were obtained from the ten positive samples. The difference in the prevalence between locations might be due not only to the hotter and drier conditions of Santa Elena Peninsula but also to the different compositions of species in both locations. Our results suggest that B. dendrobatidis is at the edge of its distribution in these dry and hot environments of tropical dry forest. This study supports the existence of climatic refuges from chytridiomycosis and highlights the importance of tropical dry forest conservation for amphibians in the face of epidemic disease.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/aislamiento & purificación , Ambiente , Bosques , Animales , Quitridiomicetos/genética , Costa Rica , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA