Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794507

RESUMEN

This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.

2.
J Biomater Sci Polym Ed ; 34(8): 1067-1089, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36475413

RESUMEN

Copper is a trace element of biological significance that can form complexes with several thiol containing compounds which can be used as filler in biomedical polyurethanes. In this work, segmented polyurethanes (SPUs) were synthesized with thiol containing compounds as chain extenders including d-penicillamine (DP), l-penicillamine (LP), l-cysteine (LC) and reduced glutathione (GR). Then, the synthesized polyurethane was filled with copper chelates based on the same chain extenders. Evidence of free thiol containing chain extender in polyurethane was not observed by FTIR and Raman but EDX provided evidence of sulfur in the unfilled polyurethane and copper and sulfur in their composite. DSC and DRX showed the semi-crystalline nature of the polyurethanes which provided good mechanical properties, especially to those prepared with DP. The Tg of the PCL determined by DMA shifted toward higher temperatures by the addition of copper complexes while TGA studies showed that the thermal degradation was slightly improved when LCCu and GRCu complex were added. Macrophage viability was observed in all composition studied after longer times of extraction (72 h) and dilutions (1:2 to 1:32) but remarkably high in those prepared with LCCu and GRCu. The anti-inflammatory response was proved in LC and GR copper complex filled polyurethanes as IL-4 and IL-10 increased with time while IL-1ß and TNF-α were reduced.


Asunto(s)
Materiales Biocompatibles , Poliuretanos , Poliuretanos/química , Materiales Biocompatibles/química , Cobre , Azufre , Antiinflamatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA