Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Reprod ; 38(11): 2137-2153, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37766497

RESUMEN

STUDY QUESTION: Is the chromosome copy number of the trophectoderm (TE) of a human reconstituted embryos after spindle transfer (ST) representative of the inner cell mass (ICM)? SUMMARY ANSWER: Single-cell multi-omics sequencing revealed that ST blastocysts have a higher proportion of cell lineages exhibiting intermediate mosaicism than conventional ICSI blastocysts, and that the TE of ST blastocysts does not represent the chromosome copy number of ICM. WHAT IS KNOWN ALREADY: Preimplantation genetic testing for aneuploidy (PGT-A) assumes that TE biopsies are representative of the ICM, but the TE and ICM originate from different cell lineages, and concordance between TE and ICM is not well-studied, especially in ST embryos. STUDY DESIGN, SIZE, DURATION: We recruited 30 infertile women who received treatment at our clinic and obtained 45 usable blastocysts (22 from conventional ICSI and 23 reconstituted embryos after ST). We performed single-cell multi-omics sequencing on all blastocysts to predict and verify copy number variations (CNVs) in each cell. We determined the chromosome copy number of each embryo by analysing the proportion of abnormal cells in each blastocyst. We used the Bland-Altman concordance and the Kappa test to evaluate the concordance between TE and ICM in the both groups. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study was conducted at a public tertiary hospital in China, where all the embryo operations, including oocytes retrieval, ST, and ICSI, were performed in the embryo laboratory. We utilized single-cell multi-omics sequencing technology at the Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, to analyse the blastocysts. Transcriptome sequencing was used to predict the CNV of each cell through bioinformatics analysis, and the results were validated using the DNA methylation library of each cell to confirm chromosomal normalcy. We conducted statistical analysis and graphical plotting using R 4.2.1, SPSS 27, and GraphPad Prism 9.3. MAIN RESULTS AND THE ROLE OF CHANCE: Mean age of the volunteers, the blastocyst morphology, and the developmental ratewere similar in ST and ICSI groups. The blastocysts in the ST group had some additional chromosomal types that were prone to variations beyond those enriched in the blastocysts of the ICSI group. Finally, both Bland-Altman concordance test and kappa concordancetest showed good chromosomal concordance between TE and ICM in the ICSI blastocysts (kappa = 0.659, P < 0.05), but not in ST blastocysts (P = 1.000), suggesting that the TE in reconstituted embryos is not representative of ICM. Gene functional annotation (GO and KEGG analyses) suggests that there may be new or additional pathways for CNV generation in ST embryos compared to ICSI embryos. LIMITATIONS, REASONS FOR CAUTION: This study was mainly limited by the small sample size and the limitations of single-cell multi-omics sequencing technology. To select eligible single cells, some cells of the embryos were eliminated or not labelled, resulting in a loss of information about them. The findings of this study are innovative and exploratory. A larger sample size of human embryos (especially ST embryos) and more accurate molecular genetics techniques for detecting CNV in single cells are needed to validate our results. WIDER IMPLICATIONS OF THE FINDINGS: Our study justifies the routine clinical use of PGT-A in ICSI blastocysts, as we found that the TE is a good substitute for ICM in predicting chromosomal abnormalities. While PGT-A is not entirely accurate, our data demonstrate good clinical feasibility. This trial was able to provide correct genetic counselling to patients regarding the reliability of PGT-A. Regarding ST blastocysts, the increased mosaicism rate and the inability of the TE to represent the chromosomal copy number of the ICM are both biological characteristics that differentiate them from ICSI blastocysts. Currently, ST is not used clinically on a large scale to produce blastocysts. However, if ST becomes more widely used in the future, our study will be the first to demonstrate that the use of PGT-A in ST blastocysts may not be as accurate as PGT-A for ICSI blastocysts. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the National Key R&D Program of China (2018YFA0107601) and the National Key R&D Program of China (2018YFC1003003). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Infertilidad Femenina , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Variaciones en el Número de Copia de ADN , Diagnóstico Preimplantación/métodos , Reproducibilidad de los Resultados , Infertilidad Femenina/metabolismo , Multiómica , Blastocisto/metabolismo , Pruebas Genéticas/métodos , Cromosomas , Aneuploidia , Mosaicismo
2.
Biochem Biophys Res Commun ; 491(3): 840-847, 2017 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-28552527

RESUMEN

Currently available organ culture methods can induce the differentiation of spermatogonial stem cells (SSCs) to spermatids in vitro, but the percentages of haploid cells and elongated spermatids are extremely low. The goal of this study was to test strategies to increase the differentiation rate of SSCs into elongated spermatids in vitro. RNA-seq was performed from forty round spermatids isolated by laser capture microdissection from cultured mouse testicular fragments (MTFs) or 27 days post-partum testes. Gene Ontology (GO) and KEGG analysis of the transcriptome revealed that many cell cycle and apoptosis-associated genes were among the differently expressed genes. Quantitative real-time PCR confirmed that the expression of Ccnd3 decreased and the expression of Trp53, Casp8 and Cyct increased in round spermatids from cultured MTFs. As insulin-like growth factor (IGF-1) can regulate cell cycle and apoptosis of many kinds of cells, the expression of Igf-1 decreased in cultured MTFs and IGF-1 receptor expressed strongly in germ cells, IGF-1 was added to the basal medium. IGF-1 increased the percentages of round and elongated spermatids by decreasing the apoptosis of germ cells and increasing the density of germ cells in cultured MTFs. These results indicate that IGF-1 plays a critical role in spermatogenesis from SSCs.


Asunto(s)
Apoptosis/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Técnicas de Cultivo de Órganos/métodos , Espermátides/fisiología , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Diferenciación Celular , Aumento de la Célula , Células Cultivadas , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Espermátides/citología , Testículo/citología
3.
Reprod Fertil ; 4(2)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943184

RESUMEN

Abstract: The transition of maternal to zygotic gene expression regulation is critical for human preimplantation embryo development. In recent years, single-cell RNA sequencing (scRNA-seq) had been applied to detect the factors that regulate human oocyte maturation and early embryo development. Here, the evaluation of transcriptomes in single blastomere from the embryo collected from patients by scRNA-seq was performed. There were 20 blastomeres biopsied from 8-cell embryos of seven patients who received more than two ART cycles due to low embryo competence. Meanwhile, ten cells were collected from 8-cell embryos of four patients who received ART treatment due to male or tubal factors. The blastomeres were then evaluated using the previously established scRNA-seq method to determine the associations between their gene expression and developmental competence. The total number of genes detected in 8-cell embryos that failed to form blastocyst including maternal and zygotic mRNAs was reduced. There were 324 differently expressed genes detected among the 8-cell embryos including 65 genes that were significantly suppressed in the 8-cell embryos that failed to form blastocyst. Further analysis found these 8-cell embryos arrested at the cleavage stage due to the dysfunction of the cell cycle, DNA transcription activity, histone methylation, and cell division-related genes such as SMCO-1, ZNF271P,ZNF679, ASF1b, BEX3, DPPA2, and ORC4. The alterations of gene expression detected in human 8-cell embryos are tightly associated with its developmental competence and could be used as targets to enhance embryo development or parameters to predict the embryo's development outcomes. Lay summary: Many females are suffering infertility due to the failure of embryonic development at early stages due to unknown causes. At the very beginning of human embryo development, the embryos start to express its own genes, which should be achieved at 8-cell stage. In current research, we isolated one cell from 8-cell embryos and detected the gene expression at single-cell level. Then the remaining cells of these embryos were cultured to form blastocyst. Meanwhile, the data was analyzed according to the outcomes of embryo development. We detected 324 differently expressed genes between the 8-cell embryos that succeeded and failed to form blastocyst. Our research showed the association between the gene expression and the developmental competence of 8-cell embryos. The findings could be used to predict the embryo quality and potential therapy target to improve the efficiency of assisted reproductive techniques.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Embarazo , Femenino , Humanos , Masculino , Animales , Desarrollo Embrionario/genética , Blastocisto/metabolismo , Blastómeros/fisiología , Embrión de Mamíferos , Análisis de Secuencia de ARN/veterinaria , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
J Med Microbiol ; 72(8)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37578331

RESUMEN

Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.


Asunto(s)
Líquido Folicular , Oocitos , Embarazo , Femenino , Humanos , Fertilización In Vitro/métodos
5.
iScience ; 26(10): 107828, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736051

RESUMEN

The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.

6.
PLoS One ; 11(11): e0164874, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27835637

RESUMEN

To explore variations in the transcription activity during spermiogenesis, round and elongated spermatids were collected from ICR/CD1 model mice using laser capture microdissection (LCM) and cauda epididymal sperm samples. The transcripts were sequenced using RNA-seq, and the reads were mapped to mm9. The majority of the reads (70%) in the round and elongated spermatids were mappable to known and predicted exons, but that in sperm was only 9%. The results of the distribution of reads suggested that alternative splicing was more complicated in sperm than in round and elongated spermatids. In the 19,127 genes, we detected the expression of 5,104 de novo genes and 91,112 alternative splicing events, and 12,105 were differentially expressed. Gene ontology (GO), InterPro domains, and KEGG revealed changes in gene transcription, mitochondrial protein translation, cellular components, and energy metabolism during spermiogenesis. The results provided considerable information about alternative splicing events, differentiallly expressed genes (DEGs), and novel transcriptions during spermiogenesis in mice.


Asunto(s)
Variación Genética , Proteínas Mitocondriales/genética , Espermátides/metabolismo , Espermatozoides/metabolismo , Transcriptoma , Empalme Alternativo , Animales , Metabolismo Energético/genética , Ontología de Genes , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN , Espermátides/crecimiento & desarrollo , Espermátides/ultraestructura , Espermatogénesis , Espermatozoides/crecimiento & desarrollo , Espermatozoides/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA