Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612582

RESUMEN

Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is an important extracellular matrix protein of the heart. Here, we generated MSC-derived exosomes cultivated under LAMA2 coating to enhance human-induced pluripotent stem cell (hiPSC)-cardiomyocyte recognition of LAMA2-EXOs, thus, increasing cell protection during ischemia reoxygenation. We mapped the mRNA content of LAMA2 and gelatin-EXOs and identified 798 genes that were differentially expressed, including genes associated with cardiac muscle development and extracellular matrix organization. Cells were treated with LAMA2-EXOs 2 h before a 4 h ischemia period (1% O2, 5% CO2, glucose-free media). LAMA2-EXOs had a two-fold protective effect compared to non-treatment on plasma membrane integrity and the apoptosis activation pathway; after a 1.5 h recovery period (20% O2, 5% CO2, cardiomyocyte-enriched media), cardiomyocytes treated with LAMA2-EXOs showed faster recovery than did the control group. Although EXOs had a protective effect on endothelial cells, there was no LAMA2-enhanced protection on these cells. This is the first report of LAMA2-EXOs used to treat cardiomyocytes that underwent ischemia-reoxygenation injury. Overall, we showed that membrane-specific EXOs may help improve cardiomyocyte survival in treating ischemic cardiovascular disease.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Laminina , Humanos , Miocitos Cardíacos , Dióxido de Carbono , Células Endoteliales , Isquemia
2.
J Mol Med (Berl) ; 102(1): 39-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37878028

RESUMEN

Less than 15% of patients with esophageal squamous cell carcinoma (ESCC) survive 5 years after diagnosis. A better understanding of the biology of these tumors and the development of clinical biomarkers is needed. Autophagy is a physiological mechanism involved in the turnover of cellular components that plays a key role in cancer. This study evaluated the differential levels of three key regulators of autophagy (SQSTM1, MAP1LC3B, and BECN1) in patients with ESCC, associating autophagy with histopathologic features, including the grade of differentiation, mitotic rate, inflammation score, and the intensity of tumor-infiltrating lymphocytes. Nuclear morphometry of the tumor parenchyma was also assessed, associating it with autophagy and histopathology. All three markers significantly increased in patients with ESCC compared to the control group. Based on the mean expression of each protein in the control group, 57% of patients with ESCC had high levels of all three markers compared to control patients (14%). The most frequent profiles found in ESCC were BECNhigh/MAP1LC3high and BECNhigh/SQSTM1high. According to the TCGA database, we found that the main autophagy genes were upregulated in ESCC. Moreover, high levels of autophagy markers were associated with a poor prognosis. Considering nuclear morphometry, ESCC samples showed a significant reduction in nuclear area, which was strongly negatively correlated with autophagy. Finally, the percentage of normal nuclei was associated with tumor differentiation, while poorly differentiated tumors showed lower SQSTM1 levels. ESCC progression may involve increased autophagy and changes in nuclear structure, associated with clinically relevant histopathological features. KEY MESSAGES: Autophagy markers are co-increased in primary ESCC. Autophagy negatively correlates with nuclear morphometry in ESCC parenchyma. Autophagy and nuclear morphometry are associated with histopathological features. Autophagy is increased in ESCC-TCGA database and associated with poor prognosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/patología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Biomarcadores de Tumor/genética , Autofagia
3.
Metab Syndr Relat Disord ; 22(5): 394-401, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498801

RESUMEN

Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.


Asunto(s)
Dieta Alta en Grasa , Modelos Animales de Enfermedad , Vesículas Extracelulares , Ratas Sprague-Dawley , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Animales , Masculino , Ratas , Hígado/metabolismo , Hígado/patología , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/etiología , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Inflamación/patología , Inflamación/metabolismo , Deficiencia de Colina/complicaciones
4.
Mol Neurobiol ; 55(9): 7242-7258, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29397557

RESUMEN

There is an urgent need for advances in the treatment of Ewing sarcoma (EWS), an aggressive childhood tumor with possible neuroectodermal origin. Inhibition of histone deacetylases (HDAC) can revert aberrant epigenetic states and reduce growth in different experimental cancer types. Here, we investigated whether the potent HDAC inhibitor, sodium butyrate (NaB), has the ability to reprogram EWS cells towards a more differentiated state and affect their growth and survival. Exposure of two EWS cell lines to NaB resulted in rapid and potent inhibition of HDAC activity (1 h, IC50 1.5 mM) and a significant arrest of cell cycle progression (72 h, IC50 0.68-0.76 mM), marked by G0/G1 accumulation. Delayed cell proliferation and reduced colony formation ability were observed in EWS cells after long-term culture. NaB-induced effects included suppression of cell proliferation accompanied by reduced transcriptional expression of the EWS-FLI1 fusion oncogene, decreased expression of key survival and pluripotency-associated genes, and re-expression of the differentiation neuronal marker ßIII-tubulin. Finally, NaB reduced c-MYC levels and impaired survival in putative EWS cancer stem cells. Our findings support the use of HDAC inhibition as a strategy to impair cell growth and survival and to reprogram EWS tumors towards differentiation. These results are consistent with our previous studies indicating that HDis can inhibit the growth and modulate differentiation of cells from other types of childhood pediatric tumors possibly originating from neural stem cells.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neuronas/patología , Sarcoma de Ewing/patología , Ácido Butírico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Transcripción Genética/efectos de los fármacos
5.
Mol Neurobiol ; 54(2): 888-894, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26780458

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by excessive cell proliferation, resistance to apoptosis, and invasiveness. Due to resistance to currently available treatment options, the prognosis for patients with GBM is very dismal. The activation of gastrin-releasing peptide receptors (GRPR) stimulates GBM cell proliferation, whereas GRPR antagonists induce antiproliferative effects in in vitro and in vivo experimental models of GBM. However, the role of GRPR in regulating other aspects of GBM cell function related to tumor progression remains poorly understood, and previous studies have not used RNA interference techniques as tools to examine GRPR function in GBM. Here, we found that stable GRPR knockdown by a lentiviral vector using a short hairpin interfering RNA sequence in human A172 GBM cells resulted in increased cell size and altered cell cycle dynamics consistent with cell senescence. These changes were accompanied by increases in the content of p53, p21, and p16, activation of epidermal growth factor receptors (EGFR), and a reduction in p38 content. These results increase our understanding of GRPR regulation of GBM cells and further support that GRPR may be a relevant therapeutic target in GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Senescencia Celular/fisiología , Glioblastoma/metabolismo , Receptores de Bombesina/deficiencia , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Humanos , Masculino , Persona de Mediana Edad , Receptores de Bombesina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA