Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biometeorol ; 68(3): 463-477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189989

RESUMEN

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent's low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.


Asunto(s)
Sensación Térmica , Tiempo (Meteorología) , Humanos , Brasil/epidemiología , Humedad , Temperatura , Estaciones del Año
2.
Mar Pollut Bull ; 205: 116639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964190

RESUMEN

Oil spills, detected by SAR sensors as dark areas, are highly effective marine pollutants that affect the ocean surface. These spills change the water surface tension, attenuating capillary gravitational waves and causing specular reflections. We conducted a case study in the Persian Gulf (Arabian Sea to the Strait of Hormuz), where approximately 163,900 gal of crude oil spilled in March 2017. Our study examined the relationship between oil weathering processes and extracted backscatter values using zonal slices projected over SAR-detected oil spills. Internal backscatter values ranged from -22.5 to -23.5, indicating an oil chemical binding and minimal interaction with seawater. MEDSLIK-II simulations indicated increased oil solubilization and radar attenuation rates with wind, facilitating coastal dispersion. Higher backscatter at the spill edges compared to the core reflected different stages of oil weathering. These results highlight the complex dynamics of oil spills and their environmental impact on marine ecosystems.


Asunto(s)
Monitoreo del Ambiente , Contaminación por Petróleo , Tecnología de Sensores Remotos , Agua de Mar , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Océano Índico , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Petróleo/análisis , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA