Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathogens ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986372

RESUMEN

Natural products have important pharmacological activities. This study sought to investigate the activity of the compound betulinic acid (BA) against different strains of bacteria and fungi. The minimum inhibitory concentration (MIC) was determined and then the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). After performing the in vitro tests, molecular modeling studies were carried out to investigate the mechanism of action of BA against the selected microorganisms. The results showed that BA inhibited the growth of microbial species. Among the 12 species (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium tuberculosis, Candida albicans, C. tropicalis, C. glabrata, Aspergillus flavus, Penicillium citrinum, Trichophyton rubrum, and Microsporum canis) investigated, 9 (75%) inhibited growth at a concentration of 561 µM and 1 at a concentration of 100 µM. In general, the MBC and MFC of the products were between 561 and 1122 µM. In silico studies showed that BA presented a mechanism of action against DNA gyrase and beta-lactamase targets for most of the bacteria investigated, while for fungi the mechanism of action was against sterol 14α-demethylase (CYP51) targets and dihydrofolate reductase (DHFR). We suggest that BA has antimicrobial activity against several species.

2.
Eur J Med Chem ; 245(Pt 1): 114908, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36435016

RESUMEN

Herein a series of 4-aminoquinolines were synthesized in an attempt to optimize and study the structural features related to LABIO-17 biological activity, a Mycobacterium tuberculosis NADH-dependent enoyl-acyl carrier protein reductase (MtInhA) inhibitor previously identified by a virtual-ligand-screening approach. Structure-activity relationships led to novel submicromolar inhibitors of MtInhA and potent antitubercular agents. The lead compound is 87-fold more potent as enzymatic inhibitors and 32-fold more potent against M. tuberculosis H37Rv strain in comparison with LABIO-17. These molecules were also active against multidrug-resistant strains, devoid of apparent toxicity to mammalian cells and showed favorable in vitro ADME profiles. Additionally, these compounds were active in an intracellular model of tuberculosis (TB) infection, showed no genotoxicity signals, satisfactory absorption parameters and absence of in vivo acute toxicity. Finally, treatment with selected 4-aminoquinoline for two weeks produced bacteriostatic effect in a murine model of TB. Taken together, these findings indicate that this chemical class may furnish candidates for the future development of drug-sensitive and drug-resistant tuberculosis treatments.


Asunto(s)
Aminoquinolinas , Antituberculosos , Inhibidores Enzimáticos , Mycobacterium tuberculosis , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+) , Animales , Ratones , Aminoquinolinas/síntesis química , Aminoquinolinas/farmacología , Aminoquinolinas/uso terapéutico , Antituberculosos/síntesis química , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA