Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Metabolomics ; 20(5): 101, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235566

RESUMEN

INTRODUCTION: In soccer, most studies evaluate metabolic profile changes in male athletes, often using data from a single match. Given the current landscape of women's soccer and the effects of biological sex on the physiological response and adaptation to exercise, more studies targeting female athletes and analyzing pre- and post-game moments throughout the season are necessary. OBJECTIVES: To describe the metabolomics profile of female soccer athletes from an elite team in Brazil. The study observed the separation of groups in three pre- and post-game moments and identified the discriminating metabolites. METHODS: The study included 14 female soccer athletes. Urine samples were collected and analyzed using Nuclear Magnetic Resonance in pre-game and immediate post-game moments over three national championship games. The metabolomics data were then used to generate OPLS-DA and VIP plots. RESULTS: Forty-three metabolites were identified in the samples. OPLS-DA analyses demonstrated a progressive separation between pre-post conditions, as supported by an increasing Q2 value (0.534, 0.625, and 0.899 for games 1, 2 and 3, respectively) and the first component value (20.2% and 19.1% in games 1 and 2 vs. 29.9% in game 3). Eight out of the fifteen most discriminating metabolites appeared consistently across the three games: glycine, formate, citrate, 3-hydroxyvalerate, glycolic acid, trimethylamine, urea, and dimethylglycine. CONCLUSION: The main difference between the three games was the increasing separation between groups throughout the championship. Since the higher VIP-scores metabolites are linked to energy and protein metabolism, this separation may be attributed several factors, one being the accumulation of fatigue.


Asunto(s)
Atletas , Biomarcadores , Metabolómica , Fútbol , Fútbol/fisiología , Humanos , Metabolómica/métodos , Biomarcadores/orina , Femenino , Adulto Joven , Metaboloma , Adulto , Brasil , Espectroscopía de Resonancia Magnética/métodos
2.
Bioorg Chem ; 152: 107735, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39213798

RESUMEN

Urease is a metalloenzyme that contains two Ni(II) ions in its active site and catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The development of effective urease inhibitors is crucial not only for mitigating nitrogen losses in agriculture but also for offering an alternative treatment against infections caused by resistant pathogens that utilize urease as a virulence factor. This study focuses on synthesizing and investigating the urease inhibition potential of Biginelli Adducts bearing a boric acid group. An unsubstituted or hydroxy-substituted boronic group in the Biginelli adducts structure enhances the urease inhibitory activity. Biophysical and kinetics studies revealed that the best Biginelli adduct (4e; IC50 = 132 ± 12 µmol/L) is a mixed inhibitor with higher affinity to the urease active site over an allosteric one. Docking studies confirm the interactions of 4e with residues essential for urease activity and demonstrate its potential to coordinate with the nickel atoms through the oxygen atoms of carbonyl or boronic acid groups. Overall, the Biginelli adduct 4e shows great potential as an additive for developing enhanced efficiency fertilizers and/or for medical applications.


Asunto(s)
Ácidos Borónicos , Inhibidores Enzimáticos , Ureasa , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Ácidos Borónicos/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Canavalia/enzimología
3.
Curr Microbiol ; 81(10): 325, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182011

RESUMEN

Antimicrobials fight microorganisms, preventing and treating infectious diseases. However, antimicrobial resistance (AMR) is a growing concern due to the inappropriate and excessive use of these drugs. Several mechanisms can lead to resistance, including efflux pumps such as the NorA pump in Staphylococcus aureus, which reduces the effectiveness of fluoroquinolones. Thiadiazines are heterocyclic compounds whose chemical structure resembles that of cephalosporins. Therefore, these compounds and their derivatives have been studied for their potential in combating increased bacterial resistance. To analyze this hypothesis, direct activity assays, antibiotic action-modifying activity, fluorescence assays to evaluate the retention of ethidium bromide inside bacteria, and molecular docking were carried out. These experiments involved serial dilutions in microplates against Staphylococcus aureus strain 1199B under the influence of six thiadiazine derivatives (IJ10, IJ11, IJ21, IJ22, IJ23, and IJ25). The tests revealed that, despite not showing effective direct activity, some thiadiazine derivatives (IJ11, IJ21, and IJ22) inhibited the function of the bromide pump both in microdilution tests and in fluorescence and docking assays. Particularly, the IJ11 compound stood out for its activity similar to efflux inhibitors, as well as its inhibition of the norfloxacin pump of this bacterium. Among the results of this study, it deserves to be highlighted for anchoring future experiments, as it represents the first investigation of this group of thiadiazine derivatives against the NorA pump.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus , Tiadiazinas , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Tiadiazinas/farmacología , Tiadiazinas/química , Simulación por Computador
4.
Exp Parasitol ; 256: 108657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043764

RESUMEN

Aedes aegypti serves as the primary vector for viruses like dengue, Chikungunya, Zika, and yellow fever, posing a significant public health challenge in Brazil. Given the absence of approved vaccines for these diseases, effective mosquito control becomes paramount in preventing outbreaks. However, currently available chemical insecticides face issues related to toxicity and the emergence of resistance, necessitating the exploration of new active compounds. Drawing inspiration from natural products, we identified the 1,3-benzodioxole group as a key pharmacophore associated with insecticidal activity. Therefore, this study aimed to synthesize and assess the larvicidal activity of 1,3-benzodioxole acids against Ae. aegypti, as well as their toxicity in mammals. Among the compounds evaluated, 3,4-(methylenedioxy) cinnamic acid (compound 4) demonstrated larvicidal activity. It exhibited LC50 and LC90 values of 28.9 ± 5.6 and 162.7 ± 26.2 µM, respectively, after 24 h of exposure. For reference, the positive control, temephos, displayed both LC50 and LC90 values below 10.94 µM. These findings underline the significance of the 3,4-methylenedioxy substituent on the aromatic ring and the presence of a double bond in the aliphatic chain for biological activity. Furthermore, compound 4 exhibited no cytotoxicity towards human peripheral blood mononuclear cells, even at concentrations up to 5200 µM. Lastly, in mice treated with 2000 mg kg-1, compound 4 showed mild behavioral effects and displayed no structural signs of toxicity in vital organs such as the kidney, liver, spleen, and lungs.


Asunto(s)
Aedes , Insecticidas , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Larva , Leucocitos Mononucleares , Mosquitos Vectores , Extractos Vegetales/farmacología , Insecticidas/farmacología , Insecticidas/química , Mamíferos
5.
AAPS PharmSciTech ; 18(1): 49-57, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27073031

RESUMEN

This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and ß-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with ß-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by ß-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.


Asunto(s)
Ciclohexenos/química , Terpenos/química , alfa-Ciclodextrinas/química , beta-Ciclodextrinas/química , Cromatografía de Gases/métodos , Limoneno , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Solubilidad , Espectrofotometría Infrarroja/métodos , Termogravimetría/métodos , Difracción de Rayos X/métodos
6.
Curr Neuropharmacol ; 22(7): 1169-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708921

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Productos Biológicos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Plantas Medicinales/química
7.
Environ Toxicol Pharmacol ; 106: 104361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211665

RESUMEN

Thimerosal, a preservative commonly used in the pharmaceutical and cosmetic industry, has raised concerns regarding its potentially toxic effects as an organic mercury compound. Within this context, using an NMR-based metabolomics profile and chemometric analysis, zebrafish embryos were used as an in vivo model to study the effects of thimerosal in metabolic profiles after exposure to sublethal concentrations of the mercury compound. The thimerosal concentrations of 40 and 80 nM were employed, corresponding to 40% and 80% of the LC50, respectively, for zebrafish embryos. The most significant alterations in the metabolic profile included changes in carbohydrates, amino acids, nucleotides, trimethylamine-N-oxide, ethanolamine, betaine, and ethanol. Furthermore, thimerosal exposure affects various metabolic pathways, impairing the nervous system, disrupting protein metabolism, and potentially causing oxidative damage. Therefore, adopting a metabolomics approach in this investigation provided insights into the potentially implicated metabolic pathways contributing to the deleterious effects of thimerosal in biological systems.


Asunto(s)
Mercurio , Pez Cebra , Animales , Timerosal/toxicidad , Metabolómica , Aminoácidos
8.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37649138

RESUMEN

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Asunto(s)
Antiinfecciosos , Tiadiazinas , Antibacterianos/farmacología , Tiadiazinas/farmacología , Tiadiazinas/química , Norfloxacino/farmacología , Antiinflamatorios , Pruebas de Sensibilidad Microbiana
9.
Artículo en Inglés | MEDLINE | ID: mdl-38018200

RESUMEN

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

10.
Biophys Chem ; 299: 107042, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263179

RESUMEN

Ureases are enzymes produced by fungi, plants, and bacteria associated with agricultural and clinical problems. The urea hydrolysis in NH3 and CO2 leads to the loss of N-urea fertilizers in soils and changes the human stomach microenvironment, favoring the colonization of H. pylori. In this sense, it is necessary to evaluate potential enzyme inhibitors to mitigate the effects of their activities and respond to scientific and market demands to produce fertilizers with enhanced efficiency. Thus, biophysical and theoretical studies were carried out to evaluate the influence of the N-alkyl chain in benzoyl-thiourea derivatives on urease enzyme inhibition. A screening based on IC50, binding constants, and theoretical studies demonstrated that BTU1 without the N-alkyl chain (R = H) was more active than other compounds, so the magnitude of the interaction was determined as BTU1 > BTU2 > BTU3 > BTU4 > BTU5, corresponding to progressively increased chain length. Thus, BTU1 was selected for interaction and soil application essays. The binding constants (Kb) for the supramolecular urease-BTU1 complex ranged from 7.95 to 5.71 × 103 M-1 at different temperatures (22, 30, and 38 °C), indicating that the preferential forces responsible for the stabilization of the complex are hydrogen bonds and van der Waals forces (ΔH = -15.84 kJ mol-1 and ΔS = -36.61 J mol-1 K-1). Theoretical and experimental results (thermodynamics, synchronous fluorescence, and competition assay) agree and indicate that BTU1 is a mixed inhibitor. Finally, urease inhibition was evaluated in the four soil samples, where BTU1 was as efficient as NBPT (based on ANOVA two-way and Tukey test with 95% confidence), with an average inhibition of 20% of urease activity. Thus, the biophysics and theoretical studies are strategies for evaluating potential inhibitors and showed that increasing the N-alkyl chain in benzoyl-thiourea derivatives did not favor urease inhibition.


Asunto(s)
Helicobacter pylori , Suelo , Humanos , Ureasa/química , Ureasa/metabolismo , Fertilizantes/análisis , Urea/química , Helicobacter pylori/metabolismo , Inhibidores Enzimáticos/farmacología , Tiourea , Biofisica
11.
Curr Alzheimer Res ; 20(3): 131-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309767

RESUMEN

The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2957-2975, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097335

RESUMEN

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Ansiedad/tratamiento farmacológico , Morfolinas/farmacología , Conducta Animal
13.
Curr Med Chem ; 29(33): 5397-5419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35301943

RESUMEN

Inflammation is a natural reaction to external stimuli to protect the organism. However, if it is exaggerated, it can cause severe physiopathological damage, linked to diseases like rheumatoid arthritis, cancer, diabetes, allergies, and infections. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy for developing anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. Thus, in recent years, computer-aided drug design (CADD) approaches have been increasingly used to design new inhibitors, decreasing costs and increasing the probability of discovering active substances. Finally, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, and quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.


Asunto(s)
Antiinflamatorios , Diseño de Fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dinoprostona/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Prostaglandina-E Sintasas
14.
Curr Drug Targets ; 23(3): 240-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34370633

RESUMEN

Since December 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical companies and academics have joined their efforts to discover new therapies to control the disease since there are no specific drugs to combat this emerging virus. Thus, several tar-gets have been explored; among them, the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide re-searchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Sistemas de Liberación de Medicamentos , Humanos , Modelos Moleculares , Pandemias , Serina Endopeptidasas
15.
Curr Top Med Chem ; 22(24): 1983-2028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35319372

RESUMEN

The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.


Asunto(s)
Infecciones Bacterianas , Química Farmacéutica , Humanos , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple
16.
Int J Biol Macromol ; 219: 224-245, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35926677

RESUMEN

In this work, we investigated in vitro different biological activities of alkaline lignins extracted from the species Buchenavia viridiflora, a tree from the Amazon rainforest used as a wood product. The chemical composition results for the twig and leaves were, respectively (%): cellulose (30.88 and 24. 28), hemicellulose (21.62 and 23.03), lignin (29.93 and 25.46), extractives (13.06 and 20.52), and ash (4.51 and 6.72). The yield was higher for the lignin of the branches (67.9 %) when compared to the leaves (60.2 %). Lignins are of the GSH type, low molecular weight and thermally stable. They promoted moderate to low antioxidant activity, highlighting the lignin of the branches, which presented an IC50 of 884.56 µg/mL for the DPPH assay and an IC50 of 14.08 µg/mL for ABTS. In the cytotoxicity assays, they showed low toxicity against macrophage cells (IC50 28.47 and 22.58 µg/mL). In addition, they were not cytotoxic against splenocytes and erythrocytes at concentrations ranging from 100 to 6.25 µg/mL. These were able to promote splenocyte proliferation and induce the production of anti-inflammatory cytokines. And inhibit the growth of tumor cells with IC50 ranging from 12.63 to values >100 µg/mL and microbial at a concentration of 512 µg/mL. Finally, they showed antiparasitic activity by inhibiting the growth of chloroquine-sensitive and resistant Plasmodium falciparum strains. These findings reinforce that the lignins in this study are promising for potential pharmaceutical and biomedical applications.


Asunto(s)
Antioxidantes , Lignina , Antioxidantes/química , Antioxidantes/farmacología , Antiparasitarios , Cloroquina , Citocinas , Lignina/química , Lignina/farmacología , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología
17.
Curr Top Med Chem ; 21(21): 1871-1899, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33797369

RESUMEN

Neglected tropical diseases (NTDs) are a group of approximately 20 diseases that affect part of the population in Sub- and Tropical countries. In the past, pharmaceutical industries and governmental agencies have invested in the control, elimination and eradication of such diseases. Among these diseases, Chagas disease (CD) and Human African trypanosomiasis (HAT) are a public health problem, mainly in the countries from the American continent and sub-Saharan African. In this context, the search for new therapeutic alternatives against such diseases has been growing in recent years, presenting cysteine proteases as the main strategy to discover new anti-trypanosomal drugs. Thus, cruzain and rhodesain enzymes are targets widely studied, since the cruzain is present in all stages of the parasite's life, related to the stages of proliferation and differentiation and infection of macrophages; while the rhodesain is related to the immune defense process. In addition, knowledge about the amino acid sequences and availability of X-ray complexes have stimulated the drug searching against these targets, mainly through molecular modeling studies. Thus, this review manuscript will be addressed to cruzain and rhodesain inhibitors developed in the last 10 years, which could provide basis for new lead compounds in the discovery of new trypanocidal drugs. We found 117 studies involving inhibitors of cruzain and rhodesain, being thiosemicarbazones, semicarbazones, N-acylhydrazones, thiazoles-hydrazone, thiazolidinones-hydrazones, oxadiazoles, triazoles, triazines, imidazoles, peptidomimetic, and others. All references were obtained using "cruzain" or "rhodesain" and "inhibitor" as keywords in Science Direct, Bentham Science, PubMed, Espacenet, Springer, ACS Publisher, Wiley, Taylor and Francis, and MDPI (Multidisciplinary Digital Publishing Institute) databases. Finally, we highlighted all these chemical classes of molecules to provide valuable information that could be used to design new inhibitors against Chagas disease and sleeping sickness in the future.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Animales , Humanos
18.
Curr Med Chem ; 28(15): 2887-2942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32787752

RESUMEN

BACKGROUND: Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS: We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS: 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION: The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
19.
Curr Res Toxicol ; 2: 386-398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888530

RESUMEN

Toxicological effects of 25H-NBOMe and 25H-NBOH recreational drugs on zebrafish embryos and larvae at the end of 96 h exposure period were demonstrated. 25H-NBOH and 25H-NBOMe caused high embryo mortality at 80 and 100 µg mL-1, respectively. According to the decrease in the concentration tested, lethality decreased while non-lethal effects were predominant up to 10 and 50 µg mL-1 of 25H-NBOH and 25H-NBOMe, respectively, including spine malformation, egg hatching delay, body malformation, otolith malformation, pericardial edema, and blood clotting. We can disclose that these drugs have an affinity for DNA in vitro using biophysical spectroscopic assays and molecular modeling methods. The experiments demonstrated that 25H-NBOH and 25H-NBOMe bind to the unclassical major groove of ctDNA with a binding constant of 27.00 × 104 M-1 and 5.27 × 104 M-1, respectively. Furthermore, these interactions lead to conformational changes in the DNA structure. Therefore, the results observed in the zebrafish embryos and DNA may be correlated.

20.
Curr Top Med Chem ; 20(24): 2168-2185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32621719

RESUMEN

BACKGROUND: Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE: In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS: Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION: Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Humanos , Indoles/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fenoles/química , Conformación Proteica , Piridinas/química , Quinolinas/química , Relación Estructura-Actividad , Staphylococcus aureus Resistente a Vancomicina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA