Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 88(6): 947-962, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27500669

RESUMEN

Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2 ) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography-mass spectrometry (MS); liquid chromatography (LC)-multiple reaction monitoring-MS; and ultra-high-performance LC-quadrupole time-of-flight-MS. A total of 358 metabolites from guard cells were quantified in a time-course response to elevated CO2 level. Most metabolites increased under elevated CO2 , showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2 -induced stomatal closure is mediated by JA signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ciclopentanos/metabolismo , Metabolómica/métodos , Oxilipinas/metabolismo , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
Sci Rep ; 6: 35778, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762345

RESUMEN

Global CO2 level presently recorded at 400 ppm is expected to reach 550 ppm in 2050, an increment likely to impact plant growth and productivity. Using targeted LC-MS and GC-MS platforms we quantified 229 and 29 metabolites, respectively in a time-course study to reveal short-term responses to different concentrations (1, 3, and 10 mM) of bicarbonate (HCO3-) under light and dark conditions. Results indicate that HCO3- treatment responsive metabolomic changes depend on the HCO3- concentration, time of treatment, and light/dark. Interestingly, 3 mM HCO3- concentration treatment induced more significantly changed metabolites than either lower or higher concentrations used. Flavonoid biosynthesis and glutathione metabolism were common to both light and dark-mediated responses in addition to showing concentration-dependent changes. Our metabolomics results provide insights into short-term plant cellular responses to elevated HCO3- concentrations as a result of ambient increases in CO2 under light and dark.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Bicarbonatos/metabolismo , Factores Biológicos/análisis , Oscuridad , Luz , Metaboloma , Arabidopsis/química , Cromatografía de Gases , Cromatografía Liquida , Espectrometría de Masas , Metabolómica , Células Vegetales/química , Células Vegetales/efectos de los fármacos , Células Vegetales/efectos de la radiación , Suspensiones
3.
PLoS One ; 10(12): e0144206, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26641455

RESUMEN

Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.


Asunto(s)
Bicarbonatos/metabolismo , Brassica napus/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Metaboloma/fisiología , Aminoácidos/biosíntesis , Metabolómica , Estomas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA