Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 156(1-2): 69-83, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439370

RESUMEN

During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives--rather than responds to--metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture.


Asunto(s)
Drosophila melanogaster/fisiología , Neovascularización Fisiológica , Neuropéptidos/metabolismo , Animales , Calcio/metabolismo , Sistema Digestivo/irrigación sanguínea , Humanos , Modelos Animales , Neovascularización Patológica , Neuronas/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/metabolismo
2.
PLoS Biol ; 20(6): e3001684, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727855

RESUMEN

The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Hipoxia , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
PLoS Biol ; 19(11): e3001431, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723964

RESUMEN

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.


Asunto(s)
Adaptación Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calor , Lípidos/química , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Frío , GMP Cíclico/metabolismo , Glicerofosfolípidos/metabolismo , Fenotipo , Transducción de Señal , Estrés Fisiológico , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo
4.
J Biol Chem ; 298(9): 102343, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933017

RESUMEN

Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His10 tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.


Asunto(s)
Biotinilación , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Carboxiliasas , Acetil-CoA Carboxilasa/metabolismo , Animales , Biotinilación/métodos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metilmalonil-CoA Descarboxilasa/metabolismo , Piruvato Carboxilasa/metabolismo , Estreptavidina
5.
Nature ; 542(7639): 43-48, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28099418

RESUMEN

Interleukin-17 (IL-17) is a major pro-inflammatory cytokine: it mediates responses to pathogens or tissue damage, and drives autoimmune diseases. Little is known about its role in the nervous system. Here we show that IL-17 has neuromodulator-like properties in Caenorhabditis elegans. IL-17 can act directly on neurons to alter their response properties and contribution to behaviour. Using unbiased genetic screens, we delineate an IL-17 signalling pathway and show that it acts in the RMG hub interneurons. Disrupting IL-17 signalling reduces RMG responsiveness to input from oxygen sensors, and renders sustained escape from 21% oxygen transient and contingent on additional stimuli. Over-activating IL-17 receptors abnormally heightens responses to 21% oxygen in RMG neurons and whole animals. IL-17 deficiency can be bypassed by optogenetic stimulation of RMG. Inducing IL-17 expression in adults can rescue mutant defects within 6 h. These findings reveal a non-immunological role of IL-17 modulating circuit function and behaviour.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Interleucina-17/metabolismo , Sensación/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Caenorhabditis elegans/efectos de los fármacos , Células HEK293 , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Receptores de Interleucina-17/metabolismo , Sensación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
J Biol Chem ; 297(3): 101094, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416233

RESUMEN

Proximity labeling provides a powerful in vivo tool to characterize the proteome of subcellular structures and the interactome of specific proteins. The nematode Caenorhabditis elegans is one of the most intensely studied organisms in biology, offering many advantages for biochemistry. Using the highly active biotin ligase TurboID, we optimize here a proximity labeling protocol for C. elegans. An advantage of TurboID is that biotin's high affinity for streptavidin means biotin-labeled proteins can be affinity-purified under harsh denaturing conditions. By combining extensive sonication with aggressive denaturation using SDS and urea, we achieved near-complete solubilization of worm proteins. We then used this protocol to characterize the proteomes of the worm gut, muscle, skin, and nervous system. Neurons are among the smallest C. elegans cells. To probe the method's sensitivity, we expressed TurboID exclusively in the two AFD neurons and showed that the protocol could identify known and previously unknown proteins expressed selectively in AFD. The active zones of synapses are composed of a protein matrix that is difficult to solubilize and purify. To test if our protocol could solubilize active zone proteins, we knocked TurboID into the endogenous elks-1 gene, which encodes a presynaptic active zone protein. We identified many known ELKS-1-interacting active zone proteins, as well as previously uncharacterized synaptic proteins. Versatile vectors and the inherent advantages of using C. elegans, including fast growth and the ability to rapidly make and functionally test knock-ins, make proximity labeling a valuable addition to the armory of this model organism.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Biotina/química , Biotinilación , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo
7.
Dev Biol ; 461(1): 66-74, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945343

RESUMEN

Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Células Receptoras Sensoriales/fisiología , Envejecimiento/fisiología , Anaerobiosis/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Plasticidad de la Célula/fisiología , Dendritas/fisiología , Oxígeno/metabolismo , Células Receptoras Sensoriales/citología
8.
PLoS Genet ; 14(6): e1007435, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879119

RESUMEN

Neurons develop elaborate morphologies that provide a model for understanding cellular architecture. By studying C. elegans sensory dendrites, we previously identified genes that act to promote the extension of ciliated sensory dendrites during embryogenesis. Interestingly, the nonciliated dendrite of the oxygen-sensing neuron URX is not affected by these genes, suggesting it develops through a distinct mechanism. Here, we use a visual forward genetic screen to identify mutants that affect URX dendrite morphogenesis. We find that disruption of the MAP kinase MAPK-15 or the ßH-spectrin SMA-1 causes a phenotype opposite to what we had seen before: dendrites extend normally during embryogenesis but begin to overgrow as the animals reach adulthood, ultimately extending up to 150% of their normal length. SMA-1 is broadly expressed and acts non-cell-autonomously, while MAPK-15 is expressed in many sensory neurons including URX and acts cell-autonomously. MAPK-15 acts at the time of overgrowth, localizes at the dendrite ending, and requires its kinase activity, suggesting it acts locally in time and space to constrain dendrite growth. Finally, we find that the oxygen-sensing guanylate cyclase GCY-35, which normally localizes at the dendrite ending, is localized throughout the overgrown region, and that overgrowth can be suppressed by overexpressing GCY-35 or by genetically mimicking elevated cGMP signaling. These results suggest that overgrowth may correspond to expansion of a sensory compartment at the dendrite ending, reminiscent of the remodeling of sensory cilia or dendritic spines. Thus, in contrast to established pathways that promote dendrite growth during early development, our results reveal a distinct mechanism that constrains dendrite growth throughout the life of the animal, possibly by controlling the size of a sensory compartment at the dendrite ending.


Asunto(s)
Caenorhabditis elegans/fisiología , Dendritas/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Neurogénesis , Células Receptoras Sensoriales/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/fisiología , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Oxígeno/metabolismo , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 115(29): E6890-E6899, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29959203

RESUMEN

Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.


Asunto(s)
Caenorhabditis elegans , Mutación , Neuropéptidos , Vesículas Secretoras , Células Receptoras Sensoriales/metabolismo , Vesículas Sinápticas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(16): 4195-4200, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373553

RESUMEN

Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2 This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Memoria/fisiología , Neuronas/efectos de los fármacos , Oxígeno/metabolismo , Feromonas/farmacología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Neuronas/citología , Neuronas/fisiología , Sensación/efectos de los fármacos , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 114(23): E4658-E4665, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536200

RESUMEN

Sensory receptor neurons match their dynamic range to ecologically relevant stimulus intensities. How this tuning is achieved is poorly understood in most receptors. The roundworm Caenorhabditis elegans avoids 21% O2 and hypoxia and prefers intermediate O2 concentrations. We show how this O2 preference is sculpted by the antagonistic action of a neuroglobin and an O2-binding soluble guanylate cyclase. These putative molecular O2 sensors confer a sigmoidal O2 response curve in the URX neurons that has highest slope between 15 and 19% O2 and approaches saturation when O2 reaches 21%. In the absence of the neuroglobin, the response curve is shifted to lower O2 values and approaches saturation at 14% O2 In behavioral terms, neuroglobin signaling broadens the O2 preference of Caenorhabditis elegans while maintaining avoidance of 21% O2 A computational model of aerotaxis suggests the relationship between GLB-5-modulated URX responses and reversal behavior is sufficient to broaden O2 preference. In summary, we show that a neuroglobin can shift neural information coding leading to altered behavior. Antagonistically acting molecular sensors may represent a common mechanism to sharpen tuning of sensory neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Globinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GMP Cíclico/metabolismo , Genes de Helminto , Globinas/genética , Guanilato Ciclasa/metabolismo , Modelos Neurológicos , Mutación , Proteínas del Tejido Nervioso/genética , Neuroglobina , Oxígeno/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 112(27): E3525-34, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100886

RESUMEN

Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called "BAG," "AFD," and "ASE" that respond to CO2 stimuli. Using in vivo Ca(2+) imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca(2+). In contrast, glial sheath cells harboring the sensory endings of C. elegans' major chemosensory neurons exhibit strong and sustained decreases in Ca(2+) in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.


Asunto(s)
Caenorhabditis elegans/fisiología , Dióxido de Carbono/metabolismo , Nervio Olfatorio/fisiología , Oviposición/fisiología , Células Receptoras Sensoriales/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , GMP Cíclico/metabolismo , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Actividad Motora/genética , Actividad Motora/fisiología , Mutación , Nervio Olfatorio/citología , Nervio Olfatorio/metabolismo , Oviposición/genética , Células Receptoras Sensoriales/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
PLoS Genet ; 10(3): e1004082, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603482

RESUMEN

Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Cisteína Endopeptidasas/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Quimiorreceptoras/metabolismo , Cilios/genética , Cilios/metabolismo , Cisteína Endopeptidasas/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratones , Neuronas Receptoras Olfatorias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Olfato/genética
15.
Trends Genet ; 29(6): 367-74, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23428113

RESUMEN

Many organisms have stress response pathways, components of which share homology with players in complex human disease pathways. Research on stress response in the nematode worm Caenorhabditis elegans has provided detailed insights into the genetic and molecular mechanisms underlying complex human diseases. In this review we focus on four different types of environmental stress responses - heat shock, oxidative stress, hypoxia, and osmotic stress - and on how these can be used to study the genetics of complex human diseases. All four types of responses involve the genetic machineries that underlie a number of complex human diseases such as cancer and neurodegenerative diseases, including Alzheimer's and Parkinson's. We highlight the types of stress response experiments required to detect the genes and pathways underlying human disease and suggest that studying stress biology in worms can be translated to understanding human disease and provide potential targets for drug discovery.


Asunto(s)
Caenorhabditis elegans/fisiología , Estrés Fisiológico , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/efectos de los fármacos , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Respuesta al Choque Térmico , Humanos , Hipoxia , Estrés Oxidativo , Estrés Fisiológico/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 110(35): E3301-10, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940325

RESUMEN

cGMP signaling is widespread in the nervous system. However, it has proved difficult to visualize and genetically probe endogenously evoked cGMP dynamics in neurons in vivo. Here, we combine cGMP and Ca(2+) biosensors to image and dissect a cGMP signaling network in a Caenorhabditis elegans oxygen-sensing neuron. We show that a rise in O2 can evoke a tonic increase in cGMP that requires an atypical O2-binding soluble guanylate cyclase and that is sustained until oxygen levels fall. Increased cGMP leads to a sustained Ca(2+) response in the neuron that depends on cGMP-gated ion channels. Elevated levels of cGMP and Ca(2+) stimulate competing negative feedback loops that shape cGMP dynamics. Ca(2+)-dependent negative feedback loops, including activation of phosphodiesterase-1 (PDE-1), dampen the rise of cGMP. A different negative feedback loop, mediated by phosphodiesterase-2 (PDE-2) and stimulated by cGMP-dependent kinase (PKG), unexpectedly promotes cGMP accumulation following a rise in O2, apparently by keeping in check gating of cGMP channels and limiting activation of Ca(2+)-dependent negative feedback loops. Simultaneous imaging of Ca(2+) and cGMP suggests that cGMP levels can rise close to cGMP channels while falling elsewhere. O2-evoked cGMP and Ca(2+) responses are highly reproducible when the same neuron in an individual animal is stimulated repeatedly, suggesting that cGMP transduction has high intrinsic reliability. However, responses vary substantially across individuals, despite animals being genetically identical and similarly reared. This variability may reflect stochastic differences in expression of cGMP signaling components. Our work provides in vivo insights into the architecture of neuronal cGMP signaling.


Asunto(s)
Técnicas Biosensibles , Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Gases/análisis , Oxígeno/metabolismo , Animales , Caenorhabditis elegans/genética , Calcio/metabolismo , Activación Enzimática , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Sinapsis/metabolismo
17.
PLoS Genet ; 9(12): e1004011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385919

RESUMEN

Different interoceptive systems must be integrated to ensure that multiple homeostatic insults evoke appropriate behavioral and physiological responses. Little is known about how this is achieved. Using C. elegans, we dissect cross-modulation between systems that monitor temperature, O2 and CO2. CO2 is less aversive to animals acclimated to 15°C than those grown at 22°C. This difference requires the AFD neurons, which respond to both temperature and CO2 changes. CO2 evokes distinct AFD Ca²âº responses in animals acclimated at 15°C or 22°C. Mutants defective in synaptic transmission can reprogram AFD CO2 responses according to temperature experience, suggesting reprogramming occurs cell autonomously. AFD is exquisitely sensitive to CO2. Surprisingly, gradients of 0.01% CO2/second evoke very different Ca²âº responses from gradients of 0.04% CO2/second. Ambient O2 provides further contextual modulation of CO2 avoidance. At 21% O2 tonic signalling from the O2-sensing neuron URX inhibits CO2 avoidance. This inhibition can be graded according to O2 levels. In a natural wild isolate, a switch from 21% to 19% O2 is sufficient to convert CO2 from a neutral to an aversive cue. This sharp tuning is conferred partly by the neuroglobin GLB-5. The modulatory effects of O2 on CO2 avoidance involve the RIA interneurons, which are post-synaptic to URX and exhibit CO2-evoked Ca²âº responses. Ambient O2 and acclimation temperature act combinatorially to modulate CO2 responsiveness. Our work highlights the integrated architecture of homeostatic responses in C. elegans.


Asunto(s)
Dióxido de Carbono/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Transmisión Sináptica/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Mutación , Células Receptoras Sensoriales/fisiología , Temperatura
18.
J Neurosci ; 34(50): 16726-38, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505325

RESUMEN

Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca(2+) responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Dendritas/enzimología , Globinas/fisiología , Guanilato Ciclasa/metabolismo , Oxígeno/metabolismo , Receptor de Muerte Celular Programada 1/fisiología , Prenilación de Proteína/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Guanilil Ciclasa Soluble
19.
Nature ; 458(7241): 1030-3, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19262507

RESUMEN

Behaviours evolve by iterations of natural selection, but we have few insights into the molecular and neural mechanisms involved. Here we show that some Caenorhabditis elegans wild strains switch between two foraging behaviours in response to subtle changes in ambient oxygen. This finely tuned switch is conferred by a naturally variable hexacoordinated globin, GLB-5. GLB-5 acts with the atypical soluble guanylate cyclases, which are a different type of oxygen binding protein, to tune the dynamic range of oxygen-sensing neurons close to atmospheric (21%) concentrations. Calcium imaging indicates that one group of these neurons is activated when oxygen rises towards 21%, and is inhibited as oxygen drops below 21%. The soluble guanylate cyclase GCY-35 is required for high oxygen to activate the neurons; GLB-5 provides inhibitory input when oxygen decreases below 21%. Together, these oxygen binding proteins tune neuronal and behavioural responses to a narrow oxygen concentration range close to atmospheric levels. The effect of the glb-5 gene on oxygen sensing and foraging is modified by the naturally variable neuropeptide receptor npr-1 (refs 4, 5), providing insights into how polygenic variation reshapes neural circuit function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Variación Genética , Globinas/genética , Globinas/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Guanilato Ciclasa/metabolismo , Herencia Multifactorial/genética , Receptores de Neuropéptido Y/metabolismo
20.
Nucleic Acids Res ; 41(20): e193, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013562

RESUMEN

Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR-Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR-CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand breaks generated by CRISPR are substrates for transgene-instructed gene conversion. This allows customized changes in the C. elegans genome by homologous recombination: sequences contained in the repair template (the transgene) are copied by gene conversion into the genome. The possibility to edit the C. elegans genome at selected locations will facilitate the systematic study of gene function in this widely used model organism.


Asunto(s)
Caenorhabditis elegans/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Reparación del ADN por Recombinación , Animales , Sistemas CRISPR-Cas , Desoxirribonucleasas/metabolismo , Conversión Génica , Ingeniería Genética/métodos , Genoma , Mutagénesis , Transgenes , ARN Pequeño no Traducido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA