Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 293, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112831

RESUMEN

Probiotics are live microorganisms that, when administered in adequate quantities, provide health benefits to the host. In this study, phenotypic and genotypic methods were used to evaluate the probiotic properties of Bacillus altitudinis 1.4. The isolate was sensitive to all antimicrobials tested and presented a positive result in the hemolysis test. B. altitudinis 1.4 spores were more resistant than vegetative cells, when evaluated in simulation of cell viability in the gastrointestinal tract, as well as adhesion to the intestinal mucosa. The isolate was capable of self-aggregation and coaggregation with pathogens such as Escherichia coli ATCC 25922 and Salmonella Enteritidis ATCC 13076. Genomic analysis revealed the presence of genes with probiotic characteristics. From this study it was possible to evaluate the gene expression of pro-inflammatory and anti-inflammatory cytokines for different treatments. Viable vegetative cells of B. altitudinis 1.4 increased the transcription of pro-inflammatory factors, in addition to also increasing the transcription of IL-10, indicating a tendency to stimulate a pro-inflammatory profile. Given the results presented, B. altitudinis 1.4 showed potential to be applied in the incorporation of this microorganism into animal feed, since the spores could tolerate the feed handling and pelletization processes.


Asunto(s)
Bacillus , Genoma Bacteriano , Probióticos , Probióticos/farmacología , Bacillus/genética , Factores Inmunológicos/farmacología , Citocinas/metabolismo , Citocinas/genética , Escherichia coli/genética , Esporas Bacterianas/genética , Adhesión Bacteriana , Salmonella enteritidis/genética , Alimentación Animal/microbiología , Antibacterianos/farmacología , Animales
2.
BMC Pediatr ; 22(1): 181, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382780

RESUMEN

BACKGROUND: X-linked agammaglobulinemia (XLA) is an Inborn Errors of Immunity (IEI) characterized by pan-hypogammaglobulinemia and low numbers of B lymphocytes due to mutations in BTK gene. Usually, XLA patients are not susceptible to respiratory tract infections by viruses and do not present interstitial lung disease (ILD) such as bronchiolitis obliterans (BO) as a consequence of acute or chronic bacterial infections of the respiratory tract. Although many pathogenic variants have already been described in XLA, the heterogeneous clinical presentations in affected patients suggest a more complex genetic landscape underlying this disorder. CASE PRESENTATION: We report two pediatric cases from male siblings with X-Linked Agammaglobulinemia and bronchiolitis obliterans, a phenotype not often observed in XLA phenotype. The whole-exome sequencing (WES) analysis showed a rare hemizygous missense variant NM_000061.2(BTK):c.1751G>A(p.Gly584Glu) in BTK gene of both patients. We also identified a gain-of-function mutation in TGFß1 (rs1800471) previously associated with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. TGFß1 plays a key role in the regulation of immune processes and inflammatory response associated with pulmonary impairment. CONCLUSIONS: Our report illustrates a possible role for WES in patients with known inborn errors of immunity, but uncommon clinical presentations, providing a personalized understanding of genetic basis, with possible implications in the identification of potential treatments, and prognosis for patients and their families.


Asunto(s)
Agammaglobulinemia , Bronquiolitis Obliterante , Enfermedades Genéticas Ligadas al Cromosoma X , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia/complicaciones , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Niño , Análisis Mutacional de ADN , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Mutación , Hermanos
3.
Pediatr Res ; 87(4): 785-795, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31645053

RESUMEN

BACKGROUND: Single-nucleotide polymorphisms (SNPs) that impact on the differential expression of interleukin 28B (IL28B) are implicated in the progression of viral-induced diseases. In this prospective longitudinal cohort study, we evaluated the association between IL28B SNPs rs12979860 and rs8099917 and the clinical outcome of bronchiolitis in pediatric patients. METHODS: A total of 682 infants suffering from bronchiolitis, categorized based on the final clinical outcome as mild or severe, were genotyped for IL28B SNPs rs12979860 and rs8099917. RESULTS: When infants were categorized exclusively based on the final clinical outcome, no association was established between IL28B SNPs and the severity of bronchiolitis. However, when stratified by sex, the homozygotes for the minor alleles of rs12979860 (T) and rs8099917 (G) were associated with a mild disease in girls but not in boys. CONCLUSION: SNPs rs12979860 and rs8099917 correlate with the severity of bronchiolitis and display a sex bias, where GG rs8099917 and TT rs12979860 genotypes are associated with a mild disease in girls but not in boys. These findings suggest that innate immunity and female sex links with the outcome of the diseases induced by respiratory viruses, such as RSV.


Asunto(s)
Bronquiolitis/genética , Interferones/genética , Polimorfismo de Nucleótido Simple , Factores de Edad , Bronquiolitis/diagnóstico , Bronquiolitis/inmunología , Bronquiolitis/virología , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Estudios Longitudinales , Fenotipo , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores Sexuales
4.
PLoS Negl Trop Dis ; 16(2): e0010166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171909

RESUMEN

The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/metabolismo , Femenino , Expresión Génica , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Embarazo , Virus Zika/fisiología , Infección por el Virus Zika/genética
5.
Front Genet ; 10: 1144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798637

RESUMEN

RASopathies are a group of rare genetic diseases caused by germline mutations in genes involved in the RAS-mitogen-activated protein kinase (RAS-MAPK) pathway. Whole-exome sequencing (WES) is a powerful approach for identifying new variants in coding and noncoding DNA sequences, including miRNAs. miRNAs are fine-tuning negative regulators of gene expression. The presence of variants in miRNAs could lead to malfunctions of regulation, resulting in diseases. Here, we identified 41 variants in mature miRNAs through WES analysis in five patients with previous clinical diagnosis of RASopathies syndromes. The pathways, biological processes, and diseases that were over-represented among the target genes of the mature miRNAs harboring variants included the RAS, MAPK, RAP1, and PIK3-Akt signaling pathways, neuronal differentiation, neurogenesis and nervous system development, congenital cardiac defects (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy), and the phenotypes and syndromes of RASopathies (Noonan syndrome, Legius syndrome, Costello syndrome, Cafe au lait spots multiple, subaortic stenosis, pulmonary valve stenosis, and LEOPARD syndrome). Furthermore, eight selected variants in nine mature miRNAs (hsa-miR-1304, hsa-miR-146a, hsa-miR-196a2, hsa-miR-499a/hsa-miR-499b, hsa-miR-449b, hsa-miR-548l, hsa-miR-575, and hsa-miR-593) may have caused alterations in the secondary structures of miRNA precursor. Selected miRNAs containing variants such as hsa-miR-146a-3p, hsa-miR-196a-3p, hsa-miR-548l, hsa-miR-449b-5p, hsa-miR-575, and hsa-miR499a-3p could regulate classical genes associated with Rasopathies and RAS-MAPK pathways, contributing to modify the expression pattern of miRNAs in patients. RT-qPCR expression analysis revealed four differentially expressed miRNAs that were downregulated: miRNA-146a-3p in P1, P2, P3, P4, and P5, miR-1304-3p in P2, P3, P4, and P5, miR-196a2-3p in P3, and miR-499b-5p in P1. miR-499a-3p was upregulated in P1, P3, and P5. These results indicate that miRNAs show different expression patterns when these variants are present in patients. Therefore, this study characterized the role of miRNAs harboring variants related to RASopathies for the first time and indicated the possible implications of these variants for phenotypes of RASopathies such as congenital cardiac defects and cardio-cerebrovascular diseases. The expression and existence of miRNA variants may be used in the study of biomarkers of the RASopathies.

6.
Genet Mol Biol ; 35(1 (suppl)): 292-303, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802714

RESUMEN

A large number of small RNAs unrelated to the soybean genome were identified after deep sequencing of soybean small RNA libraries. A metatranscriptomic analysis was carried out to identify the origin of these sequences. Comparative analyses of small interference RNAs (siRNAs) present in samples collected in open areas corresponding to soybean field plantations and samples from soybean cultivated in greenhouses under a controlled environment were made. Different pathogenic, symbiotic and free-living organisms were identified from samples of both growth systems. They included viruses, bacteria and different groups of fungi. This approach can be useful not only to identify potentially unknown pathogens and pests, but also to understand the relations that soybean plants establish with microorganisms that may affect, directly or indirectly, plant health and crop production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA