Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Physiol ; 179(4): 1704-1722, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30710053

RESUMEN

The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include Rhizobium Polar Growth and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in nin suggests the involvement of NIN in the resolution of growth versus defense outcomes. We find that the regulation of the growth module component Nodulation Pectate Lyase by NIN, and its function in rhizobial infection, are conserved in hologalegina legumes, highlighting its recruitment as a major event in the evolution of nodulation. We find that Nodulation Pectate Lyase is secreted to the infection chamber and the lumen of the infection thread. Gene network analysis using the transcription factor mutants for ERF Required for Nodulation1 and Nuclear Factor-Y Subunit A1 confirms hierarchical control of NIN over Nuclear Factor-Y Subunit A1 and shows that ERF Required for Nodulation1 acts independently to control infection. We conclude that while NIN shares functions with other NIN-Like Proteins, the conscription of key infection genes to NIN's control has made it a central regulatory hub for rhizobial infection.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/fisiología , Rhizobium/fisiología , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Giberelinas/biosíntesis , Medicago truncatula/microbiología , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética
2.
Plant Cell ; 27(12): 3410-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26672071

RESUMEN

Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis , Factores de Transcripción/metabolismo , Calcio/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Medicago truncatula/citología , Medicago truncatula/fisiología , Fijación del Nitrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/fisiología , Nicotiana/citología , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética
3.
New Phytol ; 215(1): 323-337, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28503742

RESUMEN

Bacterial accommodation inside living plant cells is restricted to the nitrogen-fixing root nodule symbiosis. In many legumes, bacterial uptake is mediated via tubular structures called infection threads (ITs). To identify plant genes required for successful symbiotic infection, we screened an ethyl methanesulfonate mutagenized population of Lotus japonicus for mutants defective in IT formation and cloned the responsible gene, ERN1, encoding an AP2/ERF transcription factor. We performed phenotypic analysis of two independent L. japonicus mutant alleles and investigated the regulation of ERN1 via transactivation and DNA-protein interaction assays. In ern1 mutant roots, nodule primordia formed, but most remained uninfected and bacterial entry via ITs into the root epidermis was abolished. Infected cortical nodule cells contained bacteroids, but transcellular ITs were rarely observed. A subset exhibited localized cell wall degradation and loss of cell integrity associated with bacteroid spread into neighbouring cells and the apoplast. Functional promoter studies revealed that CYCLOPS binds in a sequence-specific manner to a motif within the ERN1 promoter and in combination with CCaMK positively regulates ERN1 transcription. We conclude that the activation of ERN1 by CCaMK/CYCLOPS complex is an important step controlling IT-mediated bacterial progression into plant cells.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Lotus/inmunología , Lotus/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Rhizobiaceae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 170(4): 2312-24, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26839127

RESUMEN

PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Simbiosis , Ubiquitinación , Recuento de Colonia Microbiana , Glomeromycota/fisiología , Micorrizas/crecimiento & desarrollo , Fosforilación , Proteínas de Plantas/química , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Plant Physiol ; 171(2): 1037-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208242

RESUMEN

Legumes improve their mineral nutrition through nitrogen-fixing root nodule symbioses with soil rhizobia. Rhizobial infection of legumes is regulated by a number of transcription factors, including ERF Required for Nodulation1 (ERN1). Medicago truncatula plants defective in ERN1 are unable to nodulate, but still exhibit early symbiotic responses including rhizobial infection. ERN1 has a close homolog, ERN2, which shows partially overlapping expression patterns. Here we show that ern2 mutants exhibit a later nodulation phenotype than ern1, being able to form nodules but with signs of premature senescence. Molecular characterization of the ern2-1 mutation reveals a key role for a conserved threonine for both DNA binding and transcriptional activity. In contrast to either single mutant, the double ern1-1 ern2-1 line is completely unable to initiate infection or nodule development. The strong ern1-1 ern2-1 phenotype demonstrates functional redundancy between these two transcriptional regulators and reveals the essential role of ERN1/ERN2 to coordinately induce rhizobial infection and nodule organogenesis. While ERN1/ERN2 act in concert in the root epidermis, only ERN1 can efficiently allow the development of mature nodules in the cortex, probably through an independent pathway. Together, these findings reveal the key roles that ERN1/ERN2 play at the very earliest stages of root nodule development.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizobium/fisiología , Simbiosis , Factores de Transcripción/metabolismo , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/ultraestructura , Mutación/genética , Micorrizas/fisiología , Fijación del Nitrógeno , Organogénesis/genética , Epidermis de la Planta/genética , Epidermis de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Regiones Promotoras Genéticas/genética , Unión Proteica , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/ultraestructura , Transducción de Señal/genética , Simbiosis/genética , Factores de Transcripción/química , Transcripción Genética
6.
Plant Physiol ; 167(4): 1233-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25659382

RESUMEN

In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.


Asunto(s)
Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Sinorhizobium meliloti/fisiología , Biomarcadores , Pared Celular/metabolismo , Genes Reporteros , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/fisiología , Modelos Biológicos , Mutación , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Simbiosis
7.
Plant Physiol ; 169(4): 2761-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26432878

RESUMEN

The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.


Asunto(s)
Factor de Unión a CCAAT/genética , Fabaceae/genética , Filogenia , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Factor de Unión a CCAAT/clasificación , Factor de Unión a CCAAT/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Medicago truncatula/genética , Medicago truncatula/microbiología , Microscopía Confocal , Datos de Secuencia Molecular , Phaseolus/genética , Phaseolus/microbiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizobium/fisiología , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/fisiología , Simbiosis , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Plant J ; 77(6): 817-37, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24483147

RESUMEN

Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser/métodos , Medicago truncatula/genética , Análisis de Secuencia de ARN/métodos , Sinorhizobium meliloti/genética , Expresión Génica , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Medicago truncatula/citología , Meristema/genética , Fijación del Nitrógeno , Raíces de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Sinorhizobium meliloti/citología , Simbiosis
9.
Plant J ; 79(5): 757-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24930743

RESUMEN

During endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway. Here we show that NF-YA1 and NF-YA2 are both expressed in epidermal cells responding to NFs and their knock-down by reverse genetic approaches severely affects the NF-induced expression of symbiotic genes and rhizobial infection. Further over-expression, transactivation and ChIP-PCR approaches indicate that NF-YA1 and NF-YA2 function, at least in part, via the direct activation of ERN1. We thus propose a model in which NF-YA1 and NF-YA2 appear as early symbiotic regulators acting downstream of DMI3 and NIN and possibly within the same regulatory complexes as NSP1/2 to directly activate the expression of ERN1.


Asunto(s)
Factor de Unión a CCAAT/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis , Factor de Unión a CCAAT/metabolismo , Expresión Génica , Genes Reporteros , Medicago truncatula/citología , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Microdisección , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , ARN de Planta/química , ARN de Planta/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Análisis de Secuencia de ARN , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Curr Opin Plant Biol ; 81: 102597, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067084

RESUMEN

Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.

11.
Plant Physiol ; 160(4): 2155-72, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23077241

RESUMEN

Rhizobial nodulation factors (NFs) activate a specific signaling pathway in Medicago truncatula root hairs that involves the complex interplay of Nodulation Signaling Pathway1 (NSP1)/NSP2 GRAS and Ethylene Response Factor Required for Nodulation1 (ERN1) transcription factors (TFs) to achieve full ENOD11 transcription. ERN1 acts as a direct transcriptional regulator of ENOD11 through the activation of the NF-responsive "NF box." Here, we show that NSP1, when combined with NSP2, can act as a strong positive regulator of ERN1 and ENOD11 transcription. Although ERN1 and NSP1/NSP2 both activate ENOD11, two separate promoter regions are involved that regulate expression during consecutive symbiotic stages. Our findings indicate that ERN1 is required to activate NF-elicited ENOD11 expression exclusively during early preinfection, while NSP1/NSP2 mediates ENOD11 expression during subsequent rhizobial infection. The relative contributions of ERN1 and the closely related ERN2 to the rhizobial symbiosis were then evaluated by comparing their regulation and in vivo dynamics. ERN1 and ERN2 exhibit expression profiles compatible with roles during NF signaling and subsequent infection. However, differences in expression levels and spatiotemporal profiles suggest specialized functions for these two TFs, ERN1 being involved in stages preceding and accompanying infection thread progression while ERN2 is only involved in certain stages of infection. By cross complementation, we show that ERN2, when expressed under the control of the ERN1 promoter, can restore both NF-elicited ENOD11 expression and nodule formation in an ern1 mutant background. This indicates that ERN1 and ERN2 possess similar biological activities and that functional diversification of these closely related TFs relies primarily on changes in tissue-specific expression patterns.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Rhizobium/fisiología , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Mutación/genética , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Nodulación de la Raíz de la Planta/genética , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal/genética , Simbiosis/genética , Factores de Transcripción/genética , Transcripción Genética
12.
Plant Cell ; 22(10): 3474-88, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20971894

RESUMEN

LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogen-fixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. truncatula Plant U-box protein 1 (PUB1) as an interactor of the kinase domain. In planta, both proteins are localized and interact in the plasma membrane. In M. truncatula, PUB1 is expressed specifically in symbiotic conditions, is induced by Nod factors, and shows an overlapping expression pattern with LYK3 during nodulation. Biochemical studies show that PUB1 has a U-box-dependent E3 ubiquitin ligase activity and is phosphorylated by the LYK3 kinase domain. Overexpression and RNA interference studies in M. truncatula show that PUB1 is a negative regulator of the LYK3 signaling pathway leading to infection and nodulation and is important for the discrimination of rhizobia strains producing variant Nod factors. The potential role of PUB E3 ubiquitin ligases in controlling plant-microbe interactions and development through interacting with receptor-like kinases is discussed.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Nicotiana/enzimología , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
13.
Curr Biol ; 30(21): 4165-4176.e5, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32888486

RESUMEN

The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion.


Asunto(s)
Pared Celular/metabolismo , Resistencia a la Enfermedad/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Actinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Medicago truncatula , Mutación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Rhizobium/citología , Rhizobium/metabolismo , Simbiosis/genética
14.
Nat Commun ; 10(1): 2848, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253759

RESUMEN

During root nodule symbiosis, intracellular accommodation of rhizobia by legumes is a prerequisite for nitrogen fixation. For many legumes, rhizobial colonization initiates in root hairs through transcellular infection threads. In Medicago truncatula, VAPYRIN (VPY) and a putative E3 ligase LUMPY INFECTIONS (LIN) are required for infection thread development but their cellular and molecular roles are obscure. Here we show that LIN and its homolog LIN-LIKE interact with VPY and VPY-LIKE in a subcellular complex localized to puncta both at the tip of the growing infection thread and at the nuclear periphery in root hairs and that the punctate accumulation of VPY is positively regulated by LIN. We also show that an otherwise nuclear and cytoplasmic exocyst subunit, EXO70H4, systematically co-localizes with VPY and LIN during rhizobial infection. Genetic analysis shows that defective rhizobial infection in exo70h4 is similar to that in vpy and lin. Our results indicate that VPY, LIN and EXO70H4 are part of the symbiosis-specific machinery required for polar growth of infection threads.


Asunto(s)
Medicago truncatula/genética , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Sinorhizobium meliloti/fisiología , Agrobacterium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas , Simbiosis/fisiología , Técnicas del Sistema de Dos Híbridos
15.
Mol Plant Microbe Interact ; 21(5): 535-46, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18393613

RESUMEN

Genetic approaches have proved to be extremely useful in dissecting the complex nitrogen-fixing Rhizobium-legume endosymbiotic association. Here we describe a novel Medicago truncatula mutant called api, whose primary phenotype is the blockage of rhizobial infection just prior to nodule primordium invasion, leading to the formation of large infection pockets within the cortex of noninvaded root outgrowths. The mutant api originally was identified as a double symbiotic mutant associated with a new allele (nip-3) of the NIP/LATD gene, following the screening of an ethylmethane sulphonate-mutagenized population. Detailed characterization of the segregating single api mutant showed that rhizobial infection is also defective at the earlier stage of infection thread (IT) initiation in root hairs, as well as later during IT growth in the small percentage of nodules which overcome the primordium invasion block. Neither modulating ethylene biosynthesis (with L-alpha-(2-aminoethoxyvinylglycine or 1-aminocyclopropane-1-carboxylic acid) nor reducing ethylene sensitivity in a skl genetic background alters the basic api phenotype, suggesting that API function is not closely linked to ethylene metabolism or signaling. Genetic mapping places the API gene on the upper arm of the M. truncatula linkage group 4, and epistasis analyses show that API functions downstream of BIT1/ERN1 and LIN and upstream of NIP/LATD and the DNF genes.


Asunto(s)
Medicago truncatula/genética , Mutación , Raíces de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Simbiosis/genética , Genes de Plantas/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , Rhizobium/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología
16.
Front Plant Sci ; 9: 245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535753

RESUMEN

Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.

17.
Curr Biol ; 28(22): 3562-3577.e6, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30416059

RESUMEN

The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula ß-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing ß-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development.


Asunto(s)
Glucanos/metabolismo , Plasmodesmos/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/fisiología , Glucanos/fisiología , Uniones Intercelulares/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Organogénesis de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Rhizobium , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis/genética
18.
Mol Plant Microbe Interact ; 18(12): 1269-76, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16478046

RESUMEN

The MtENOD11 gene from the model legume Medicago truncatula is transcriptionally activated both in response to Sinorhizobium meliloti Nod factors and throughout infection of root tissues by the nitrogen-fixing microsymbiont. To identify the regulatory sequences involved in symbiosis-related MtENOD11 expression, a series of promoter deletions driving the beta-glucuronidase reporter gene were analyzed in transgenic M. truncatula roots. These studies have revealed that distinct regulatory regions are involved in infection-related MtENOD11 expression compared with preinfection (Nod factor-mediated) expression. In particular, the 257-bp promoter sequence immediately upstream from the start codon is sufficient for infection-related expression, but is unable to drive gene transcription in response to the Nod factor elicitor. This truncated promoter is also sufficient to confer MtENOD11 expression during both the arbuscular mycorrhizal (AM) association and the parasitic interaction with root-knot nematodes. Site-directed mutagenesis further showed that a previously identified nodule-specific AT-rich motif is required for high-level MtENOD11 expression during S. meliloti infection as well as during AM colonization. However, mutation of this motif does not affect gene expression associated with nematode-feeding sites. Taken together, these results suggest a close link between regulatory mechanisms controlling transcriptional early nodulin gene activation during both rhizobial and AM root endosymbioses.


Asunto(s)
Secuencia Rica en At/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Eliminación de Gen , Datos de Secuencia Molecular , Nematodos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Sinorhizobium meliloti/metabolismo , Simbiosis , Transcripción Genética , Activación Transcripcional
19.
DNA Res ; 20(4): 339-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23599422

RESUMEN

The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes. EuGene-P was used to comprehensively and accurately annotate the genome of the nitrogen-fixing bacterium Sinorhizobium meliloti strain 2011, leading to the prediction of 6308 CDSs as well as 1876 ncRNAs. Among them, 1280 appeared as antisense to a CDS, which supports recent findings that antisense transcription activity is widespread in bacteria. Moreover, 4077 TSSs upstream of protein-coding or non-coding genes were precisely mapped providing valuable data for the study of promoter regions. By looking for RpoE2-binding sites upstream of annotated TSSs, we were able to extend the S. meliloti RpoE2 regulon by ∼3-fold. Altogether, these observations demonstrate the power of EuGene-P to produce a reliable and high-resolution automatic annotation of prokaryotic genomes.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano , Anotación de Secuencia Molecular/métodos , Regulón , Sinorhizobium meliloti/genética , Programas Informáticos , Fijación del Nitrógeno/genética , Sistemas de Lectura Abierta , ARN no Traducido/genética , Factor sigma/genética , Sitio de Iniciación de la Transcripción
20.
PLoS One ; 6(1): e16463, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21304580

RESUMEN

Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i) early signalling events and/or bacterial infection; plant cell differentiation that is either (ii) independent or (iii) dependent on bacteroid differentiation; (iv) nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/genética , Transcripción Genética , Perfilación de la Expresión Génica , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , Fijación del Nitrógeno , Raíces de Plantas/microbiología , Sinorhizobium meliloti , Simbiosis , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA