RESUMEN
BACKGROUND: Perinatal healthcare professionals (PHCPs) provide essential support to all parents in the perinatal period, including young parents aged 16-24, who are at an increased risk of morbidity and mortality. Little is known about the impact of COVID-19 restrictions on the provision of perinatal services, and on perinatal healthcare professionals, caring for young parents in the UK. METHODS: A UK based qualitative study using semi-structured interviews with perinatal healthcare professionals (n = 17). Data were analysed using thematic analysis. RESULTS: Two themes were identified describing perinatal healthcare professionals' perceptions of providing care to young parents during the pandemic. Perinatal healthcare professionals perceived that young parents' needs were amplified by the pandemic and that pandemic-related changes to the service, such as the use of telemedicine to replace face-to-face interactions, did not manage to successfully mitigate the increased feelings of anxiety and isolation experienced by young parents. Concerns were raised by perinatal healthcare professionals that these changes reduced young parent's access to vital support for themselves and their child and may contribute to exacerbating pre-existing inequalities. CONCLUSIONS: This study provides insight into the impact of the COVID-19 pandemic on the provision of perinatal care to young parents. Perinatal mental health professionals felt these negative impacts could be overcome by using a blended approach of technology and face-to-face interactions allowing regular contact with young parents and facilitating the exchange of vital information, while maintaining access to opportunities for social interactions with other parents. Findings from this study could be used to future-proof services against further COVID-19 restrictions.
Asunto(s)
COVID-19 , Personal de Salud , Atención Perinatal , COVID-19/epidemiología , Atención a la Salud , Femenino , Personal de Salud/psicología , Humanos , Pandemias , Embarazo , Investigación CualitativaRESUMEN
BACKGROUND: Point of Care Testing (POCT) is being increasingly used to augment the delivery of physical health care in a variety of settings, but their use in mental health has been limited. Research into understanding the barriers faced for successful implementation of POCT in these settings is lacking. We aimed to identify factors affecting engagement and implementation of POCT within mental health teams by exploring the attitudes to POCT, and the perceived impact POCT has on the practice of mental healthcare clinicians. METHODS: Alongside a study evaluating the impact of a point of care device in Community Mental Health Teams (CMHTs), qualitative interviews were carried out with CMHT clinicians using POCT as part of annual physical checks for patients with severe and enduring mental illness. Data were collected using semi-structured interviews and analysed using thematic analysis. RESULTS: Fifteen clinicians were interviewed across a range of professional backgrounds. Clinicians identified usability of the technology, positive impact on their patient's experience and improved self-efficacy as drivers for successful implementation of POCT into their clinical practice. Issues with device functioning and the potential for a negative effect on the therapeutic relationship with their patients were identified as barriers. Level of physical heath training was not found to be a barrier by mental health professionals to using POCT. CONCLUSIONS: Understanding barriers and drivers for engagement is important to allow co-production of POCT and guidelines to facilitate introduction of POCT into routine clinical practice.
Asunto(s)
Servicios de Salud Mental , Pruebas en el Punto de Atención , Personal de Salud , Humanos , Sistemas de Atención de Punto , Investigación CualitativaRESUMEN
BACKGROUND: Sore throat is a common condition associated with a high rate of antibiotic prescriptions, despite limited evidence for the effectiveness of antibiotics. Corticosteroids may improve symptoms of sore throat by reducing inflammation of the upper respiratory tract. This review is an update to our review published in 2012. OBJECTIVES: To assess the clinical benefit and safety of corticosteroids in reducing the symptoms of sore throat in adults and children. SEARCH METHODS: We searched CENTRAL (Issue 4, 2019), MEDLINE (1966 to 14 May 2019), Embase (1974 to 14 May 2019), the Database of Abstracts of Reviews of Effects (DARE, 2002 to 2015), and the NHS Economic Evaluation Database (inception to 2015). We also searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared steroids to either placebo or standard care in adults and children (aged over three years) with sore throat. We excluded studies of hospitalised participants, those with infectious mononucleosis (glandular fever), sore throat following tonsillectomy or intubation, or peritonsillar abscess. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included one new RCT in this update, for a total of nine trials involving 1319 participants (369 children and 950 adults). In eight trials, participants in both corticosteroid and placebo groups received antibiotics; one trial offered delayed prescription of antibiotics based on clinical assessment. Only two trials reported funding sources (government and a university foundation). In addition to any effect of antibiotics and analgesia, corticosteroids increased the likelihood of complete resolution of pain at 24 hours by 2.40 times (risk ratio (RR) 2.4, 95% confidence interval (CI) 1.29 to 4.47; P = 0.006; I² = 67%; high-certainty evidence) and at 48 hours by 1.5 times (RR 1.50, 95% CI 1.27 to 1.76; P < 0.001; I² = 0%; high-certainty evidence). Five people need to be treated to prevent one person continuing to experience pain at 24 hours. Corticosteroids also reduced the mean time to onset of pain relief and the mean time to complete resolution of pain by 6 and 11.6 hours, respectively, although significant heterogeneity was present (moderate-certainty evidence). At 24 hours, pain (assessed by visual analogue scales) was reduced by an additional 10.6% by corticosteroids (moderate-certainty evidence). No differences were reported in recurrence/relapse rates, days missed from work or school, or adverse events for participants taking corticosteroids compared to placebo. However, the reporting of adverse events was poor, and only two trials included children or reported days missed from work or school. The included studies were assessed as moderate quality evidence, but the small number of included studies has the potential to increase the uncertainty, particularly in terms of applying these results to children. AUTHORS' CONCLUSIONS: Oral or intramuscular corticosteroids, in addition to antibiotics, moderately increased the likelihood of both resolution and improvement of pain in participants with sore throat. Given the limited benefit, further research into the harms and benefits of short courses of steroids is needed to permit informed decision-making.
Asunto(s)
Corticoesteroides/administración & dosificación , Antibacterianos/administración & dosificación , Faringitis/tratamiento farmacológico , Adolescente , Adulto , Niño , Preescolar , Quimioterapia Combinada/métodos , Humanos , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Tiempo , Tonsilitis/tratamiento farmacológico , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: People with severe mental illness experience physical health significantly worse than the general population. Physical health monitoring is shared between primary care and secondary mental healthcare services, though there is debate whether mental health teams should provide more physical healthcare. The views of mental health clinicians and patients with mental illness towards physical healthcare provision are unclear. AIMS: To explore the attitudes of Community Mental Health Team (CMHT) clinicians and patients experiencing severe mental illness towards physical healthcare and its provision. DESIGN AND SETTING: Qualitative study in a CMHT setting. METHODS: Interviews were carried out with CMHT clinicians and patients with severe mental illness. Data were collected using semi-structured interviews and analysed using thematic analysis. RESULTS: There were 14 patients and 15 clinicians recruited. Patients varied in their awareness of the association between physical and mental health, but were engaged in physical health monitoring. Clinicians were aware of the importance of physical healthcare but reported barriers to provision, including lack of training, resource constraints and uncertainty in their role. There was no consensus in either group regarding how physical healthcare should be provided, with diverse attitudes expressed for why CMHTs should and shouldn't provide more physical healthcare. CONCLUSIONS: Increasing physical healthcare provision from mental health teams requires healthcare-related barriers be addressed, but it remains unclear whether CMHT clinicians or patients believe this to be a solution.
Asunto(s)
Trastornos Mentales , Salud Mental , Actitud , Atención a la Salud , Humanos , Trastornos Mentales/terapia , Investigación CualitativaRESUMEN
There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag-specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert-specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas-despite a robust overall GC response-the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses.
Asunto(s)
Adenoviridae/inmunología , Adyuvantes Inmunológicos/farmacología , Linfocitos B/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas Virales/inmunología , Animales , Antígenos/inmunología , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Vectores Genéticos , Centro Germinal/inmunología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunologíaRESUMEN
BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.
Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Epítopos/inmunología , Femenino , Vectores Genéticos , Humanos , Interferón gamma/inmunología , Hígado/virología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto JovenRESUMEN
The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de Protozoos/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adenovirus de los Simios/genética , Adulto , Hidróxido de Aluminio/administración & dosificación , Antígenos de Protozoos/inmunología , Terapia Combinada , Vectores Genéticos/administración & dosificación , Humanos , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/administración & dosificación , Orthopoxvirus/genética , Vacunación , Adulto JovenRESUMEN
Acquisition of non-sterilizing natural immunity to Plasmodium falciparum malaria has been shown in low transmission areas following multiple exposures. However, conflicting data from endemic areas suggest that the parasite may interfere with the induction of effective B-cell responses. To date, the impact of blood-stage parasite exposure on antigen-specific B cells has not been reported following controlled human malaria infection (CHMI). Here we analysed human B-cell responses in a series of Phase I/IIa clinical trials, which include CHMI, using candidate virus-vectored vaccines encoding two blood-stage antigens: merozoite surface protein 1 (MSP1) and apical membrane antigen 1 (AMA1). Previously vaccinated volunteers show boosting of pre-existing antigen-specific memory B-cell (mBC) responses following CHMI. In contrast, unvaccinated malaria-naive control volunteers developed an mBC response against MSP1 but not AMA1. Serum IgG correlated with the mBC response after booster vaccination but this relationship was less well maintained following CHMI. A significant reduction in peripheral MSP1-specific mBC was observed at the point of diagnosis of blood-stage infection. This was coincident with a reduction in peripheral blood B-cell subsets expressing CXCR3 and elevated serum levels of interferon-γ and CXCL9, suggesting migration away from the periphery. These CHMI data confirm that mBC and antibody responses can be induced and boosted by blood-stage parasite exposure, in support of epidemiological studies on low-level parasite exposure.
Asunto(s)
Adenoviridae/genética , Antígenos de Protozoos/administración & dosificación , Linfocitos B/efectos de los fármacos , Inmunización , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Proteínas de la Membrana/administración & dosificación , Proteína 1 de Superficie de Merozoito/administración & dosificación , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/administración & dosificación , Virus Vaccinia/genética , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/parasitología , Quimiocina CXCL9/sangre , Vectores Genéticos , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Inmunoglobulina G/sangre , Memoria Inmunológica , Interferón gamma/sangre , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/diagnóstico , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Receptores CXCR3/sangre , Factores de TiempoRESUMEN
A central goal in vaccinology is the induction of high and sustained Ab responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent preclinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity, which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as aluminum hydroxide to new preclinical adjuvants and adjuvants in clinical development, such as Abisco 100, CoVaccine HT, Montanide ISA720, and stable emulsion-glucopyranosyl lipid A, for their ability to induce high and sustained Ab responses and T cell responses. These adjuvants induced a broad range of Ab responses when used in a three-shot protein-in-adjuvant regimen using the model Ag OVA and leading blood-stage malaria vaccine candidate Ags. Surprisingly, this range of Ab immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost Ab responses primed by a human adenovirus serotype 5 vaccine recombinant for the same Ag. This human adenovirus serotype 5-protein regimen also induced a more cytophilic Ab response and demonstrated improved efficacy of merozoite surface protein-1 protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination and may circumvent the need for more potent chemical adjuvants.
Asunto(s)
Adenoviridae/inmunología , Adyuvantes Inmunológicos/farmacología , Vacunas contra la Malaria/inmunología , Vacunación/métodos , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
Protein-in-adjuvant formulations and viral-vectored vaccines encoding blood-stage malaria Ags have shown efficacy in rodent malaria models and in vitro assays against Plasmodium falciparum. Abs and CD4(+) T cell responses are associated with protective efficacy against blood-stage malaria, whereas CD8(+) T cells against some classical blood-stage Ags can also have a protective effect against liver-stage parasites. No subunit vaccine strategy alone has generated demonstrable high-level efficacy against blood-stage infection in clinical trials. The induction of high-level Ab responses, as well as potent T and B cell effector and memory populations, is likely to be essential to achieve immediate and sustained protective efficacy in humans. This study describes in detail the immunogenicity of vaccines against P. falciparum apical membrane Ag 1 in rhesus macaques (Macaca mulatta), including the chimpanzee adenovirus 63 (AdCh63), the poxvirus modified vaccinia virus Ankara (MVA), and protein vaccines formulated in Alhydrogel or CoVaccine HT adjuvants. AdCh63-MVA heterologous prime-boost immunization induces strong and long-lasting multifunctional CD8(+) and CD4(+) T cell responses that exhibit a central memory-like phenotype. Three-shot (AdCh63-MVA-protein) or two-shot (AdCh63-protein) regimens induce memory B cells and high-titer functional IgG responses that inhibit the growth of two divergent strains of P. falciparum in vitro. Prior immunization with adenoviral vectors of alternative human or simian serotype does not affect the immunogenicity of the AdCh63 apical membrane Ag 1 vaccine. These data encourage the further clinical development and coadministration of protein and viral vector vaccine platforms in an attempt to induce broad cellular and humoral immune responses against blood-stage malaria Ags in humans.
Asunto(s)
Adenoviridae , Adyuvantes Inmunológicos , Antígenos de Protozoos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Poxviridae , Proteínas Protozoarias/inmunología , Virus Vaccinia , Animales , Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , Macaca mulatta , Malaria Falciparum/inmunología , Ratones , Vacunas de Subunidad/inmunologíaRESUMEN
BACKGROUND: Physical health outcomes in severe mental illness are worse than in the general population. Routine physical health check completion in this group is poor. AIMS: To quantitatively and qualitatively evaluate the impact of point of care (POC) blood testing on physical health check completion in community mental health services. METHOD: In a prospective cohort design, we equipped an early intervention service (EIS) and a community mental health team (CMHT) with a POC blood testing device for 6 months. We compared rates of blood test and full physical health check completion in the intervention teams with a matched EIS and CMHT, historically and during the intervention. We explored attitudes to POC testing using thematic analysis of semi-structured interviews with patients and clinicians. RESULTS: Although the CMHT scarcely used the POC device and saw no change in outcomes, direct comparison of testing rates in the intervention period showed increased physical health check completion in the EIS with the device (rate ratio RR = 5.18; 95% CI 2.54-12.44; P < 0.001) compared with usual care. The rate was consistent with the EIS's increasing rate of testing over time (RR = 0.45; 95% 0.09-2.08; P = 0.32). Similar trends were seen in blood test completion. POC testing was acceptable to patients but clinicians reported usability, provision and impact on the therapeutic relationship as barriers to uptake. CONCLUSIONS: POC testing was beneficial and acceptable to patients and may increase physical health check uptake. Further research, accounting for clinician barriers, is needed to evaluate its clinical and cost-effectiveness.
RESUMEN
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Asunto(s)
Eritrocitos/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunologíaRESUMEN
Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.
Asunto(s)
Epítopos/inmunología , Vectores Genéticos/inmunología , Hígado/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Inmunización Secundaria/métodos , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacunación/métodos , Vaccinia/inmunología , Virus Vaccinia/inmunología , Adulto JovenRESUMEN
BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS: Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII-specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION: We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION: Clinicaltrials.gov NCT01816113. FUNDING: Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust.
RESUMEN
Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.
Asunto(s)
Adyuvantes Inmunológicos/genética , Anticuerpos Antiprotozoarios/biosíntesis , Inmunogenicidad Vacunal , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Culicidae/efectos de los fármacos , Culicidae/parasitología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Centro Germinal/efectos de los fármacos , Centro Germinal/inmunología , Humanos , Insectos Vectores/efectos de los fármacos , Insectos Vectores/parasitología , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/inmunología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos BALB C , Pichia/genética , Pichia/metabolismo , Plásmidos/química , Plásmidos/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación , Vacunas SintéticasRESUMEN
Malaria vaccine development has largely focused on Plasmodium falciparum; however, a reawakening to the importance of Plasmodium vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII) with the human Duffy antigen receptor for chemokines (DARC) makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII - including human adenovirus serotype 5 (HAdV5), chimpanzee adenovirus serotype 63 (ChAd63), and modified vaccinia virus Ankara (MVA) vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime or in "mixed-modality" adenovirus prime - protein-in--adjuvant boost regimes (using a recombinant PvDBP_RII protein antigen formulated in Montanide(®)ISA720 or Abisco(®)100 adjuvants). Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII, and have recently entered clinical trials, which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.
RESUMEN
New tools are required to expedite the development of an effective vaccine against the blood-stage infection with the human malaria parasite Plasmodium falciparum. This work describes the assessment of the ADRB assay in a mouse model, characterizing the functional interaction between antimalarial serum antibodies and FcRs upon neutrophils. We describe a reproducible, antigen-specific assay, dependent on functional FcR signaling, and show that ADRB activity is induced equally by IgG1 and IgG2a isotypes and is modulated by blocking FcR function. However, following immunization of mice with the blood-stage vaccine candidate antigen MSP142, no measurable ADRB activity was induced against PEMS and neither was vaccine efficacy modulated against Plasmodium yoelii blood-stage challenge in γ(-/-) mice compared with WT mice. In contrast, following a primary, nonlethal P. yoelii parasite challenge, serum from vaccinated mice and nonimmunized controls showed anti-PEMS ADRB activity. Upon secondary challenge, nonimmunized γ(-/-) mice showed a reduced ability to control blood-stage parasitemia compared with immunized γ(-/-) mice; however, WT mice, depleted of their neutrophils, did not lose their ability to control infection. Thus, whereas neutrophil-induced ADRB against PEMS does not appear to play a role in protection against P. yoelii rodent malaria, induction of ADRB activity after challenge suggests that antigen targets of anti-PEMS ADRB activity remain to be established, as well as further supporting the observation that ADRB activity to P. falciparum arises following repeated natural exposure.
Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunoensayo/métodos , Malaria/inmunología , Malaria/parasitología , Neutrófilos/inmunología , Plasmodium yoelii/inmunología , Estallido Respiratorio/inmunología , Animales , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/metabolismo , Ratones , Parásitos/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal/inmunología , Resultado del TratamientoRESUMEN
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.
Asunto(s)
Adenoviridae/inmunología , Antígenos de Protozoos/inmunología , Inmunidad Humoral/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Vacunación/métodos , Virus Vaccinia/inmunología , Adenoviridae/genética , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Sangre/parasitología , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/genética , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Pan troglodytes , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Especificidad de la Especie , Virus Vaccinia/genéticaRESUMEN
Viral vectored vaccine delivery platforms have traditionally been used for the induction of cellular rather than humoral immunity. However, in recent years, recombinant adenoviral and poxviral vectored vaccines have been optimized to induce B-cell responses, resulting in the demonstration of high-titer antibody responses in a wide variety of animal species. These approaches have now been translated, confirming the induction of substantial levels of antigen-specific IgG in a series of Phase I human clinical trials targeting HIV-1 and Plasmodium falciparum malaria. To further improve the induction of antibodies, mixed-modality regimens based on recombinant viral and protein/adjuvant vaccines are now being assessed. However, limited data exist about the underlying mechanisms mediating the induction of B-cell responses by these subunit vaccines and their ability to influence the qualitative aspects of vaccine-induced B-cell populations and immunoglobulin. Future studies in this area are needed to guide the rational design of antibody-inducing subunit vaccine strategies.