Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Chem Biol ; 16(6): 686-694, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203411

RESUMEN

The broad-spectrum antibiotic D-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of D-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and D-Ala:D-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5'-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis, Mycobacterium tuberculosis Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of M. tuberculosis Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against M. tuberculosis and other bacteria.


Asunto(s)
Alanina Racemasa/metabolismo , Antibióticos Antituberculosos/química , Cicloserina/química , Proteínas Recombinantes/metabolismo , Alanina/química , Alanina/metabolismo , Alanina Racemasa/genética , Secuencia de Aminoácidos , Antibióticos Antituberculosos/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cicloserina/metabolismo , Escherichia coli , Isoxazoles/química , Ligasas/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oximas/química , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética
2.
Biochemistry ; 57(24): 3387-3401, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29684272

RESUMEN

The biosynthetic pathway of peptidoglycan is essential for Mycobacterium tuberculosis. We report here the acetyltransferase substrate specificity and catalytic mechanism of the bifunctional N-acetyltransferase/uridylyltransferase from M. tuberculosis (GlmU). This enzyme is responsible for the final two steps of the synthesis of UDP- N-acetylglucosamine, which is an essential precursor of peptidoglycan, from glucosamine 1-phosphate, acetyl-coenzyme A, and uridine 5'-triphosphate. GlmU utilizes ternary complex formation to transfer an acetyl from acetyl-coenzyme A to glucosamine 1-phosphate to form N-acetylglucosamine 1-phosphate. Steady-state kinetic studies and equilibrium binding experiments indicate that GlmU follows a steady-state ordered kinetic mechanism, with acetyl-coenzyme A binding first, which triggers a conformational change in GlmU, followed by glucosamine 1-phosphate binding. Coenzyme A is the last product to dissociate. Chemistry is partially rate-limiting as indicated by pH-rate studies and solvent kinetic isotope effects. A novel crystal structure of a mimic of the Michaelis complex, with glucose 1-phosphate and acetyl-coenzyme A, helps us to propose the residues involved in deprotonation of glucosamine 1-phosphate and the loop movement that likely generates the active site required for glucosamine 1-phosphate to bind. Together, these results pave the way for the rational discovery of improved inhibitors against M. tuberculosis GlmU, some of which might become candidates for antibiotic discovery programs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biocatálisis , Complejos Multienzimáticos/metabolismo , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Cloruro de Magnesio/química , Cloruro de Magnesio/farmacología , Estructura Molecular , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Mycobacterium tuberculosis/enzimología , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/química
3.
Antimicrob Agents Chemother ; 60(10): 6091-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480853

RESUMEN

The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor ß-chloro-d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.


Asunto(s)
Isomerasas de Aminoácido/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , beta-Alanina/análogos & derivados , Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Secuencia de Aminoácidos , Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Peptidoglicano/biosíntesis , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , beta-Alanina/química , beta-Alanina/farmacología
4.
Biophys J ; 104(6): 1304-13, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23528090

RESUMEN

Ataxin-1 is a human protein responsible for spinocerebellar ataxia type 1, a hereditary disease associated with protein aggregation and misfolding. Essential for ataxin-1 aggregation is the anomalous expansion of a polyglutamine tract near the protein N-terminus, but the sequence-wise distant AXH domain modulates and contributes to the process. The AXH domain is also involved in the nonpathologic functions of the protein, including a variety of intermolecular interactions with other cellular partners. The domain forms a globular dimer in solution and displays a dimer of dimers arrangement in the crystal asymmetric unit. Here, we have characterized the domain further by studying its behavior in the crystal and in solution. We solved two new structures of the domain crystallized under different conditions that confirm an inherent plasticity of the AXH fold. In solution, the domain is present as a complex equilibrium mixture of monomeric, dimeric, and higher molecular weight species. This behavior, together with the tendency of the AXH fold to be trapped in local conformations, and the multiplicity of protomer interfaces, makes the AXH domain an unusual example of a chameleon protein whose properties bear potential relevance for the aggregation properties of ataxin-1 and thus for disease.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ataxina-1 , Ataxinas , Humanos , Modelos Moleculares , Peso Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
5.
ACS Bio Med Chem Au ; 3(3): 233-239, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363078

RESUMEN

Alanine racemase (Alr) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the racemization of l-alanine to d-alanine. Alr is one of the two targets of the broad-spectrum antibiotic d-cycloserine (DCS), a structural analogue of d-alanine. Despite being an essential component of regimens used to treat multi- and extensively drug-resistant tuberculosis for almost seven decades, resistance to DCS has not been observed in patients. We previously demonstrated that DCS evades resistance due to an ultralow rate of emergence of mutations. Yet, we identified a single polymorphism (converting Asp322 to Asn) in the alr gene, which arose in 8 out of 11 independent variants identified and that confers resistance. Here, we present the crystal structure of the Alr variant D322N in both the free and DCS-inactivated forms and the characterization of its DCS inactivation mechanism by UV-visible and fluorescence spectroscopy. Comparison of these results with those obtained with wild-type Alr reveals the structural basis of the 240-fold reduced inhibition observed in Alr D322N.

6.
Biophys J ; 102(7): 1608-16, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22500761

RESUMEN

Polyglutamine tract-binding protein-1 (PQBP-1) is a 265-residue nuclear protein that is involved in transcriptional regulation. In addition to its role in the molecular pathology of the polyglutamine expansion diseases, mutations of the protein are associated with X-linked mental retardation. PQBP-1 binds specifically to glutamine repeat sequences and proline-rich regions, and interacts with RNA polymerase II and the spliceosomal protein U5-15kD. In this work, we obtained a biophysical characterization of this protein by employing complementary structural methods. PQBP-1 is shown to be a moderately compact but largely disordered molecule with an elongated shape, having a Stokes radius of 3.7 nm and a maximum molecular dimension of 13 nm. The protein is monomeric in solution, has residual ß-structure, and is in a premolten globule state that is unaffected by natural osmolytes. Using small-angle x-ray scattering data, we were able to generate a low-resolution, three-dimensional model of PQBP-1.


Asunto(s)
Modelos Moleculares , Proteínas Nucleares/química , Conformación Proteica , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
7.
J Biol Chem ; 286(48): 41767-41775, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21965688

RESUMEN

Neisseria heparin binding antigen (NHBA), also known as GNA2132 (genome-derived Neisseria antigen 2132), is a surface-exposed lipoprotein from Neisseria meningitidis that was originally identified by reverse vaccinology. It is one the three main antigens of a multicomponent vaccine against serogroup B meningitis (4CMenB), which has just completed phase III clinical trials in infants. In contrast to the other two main vaccine components, little is known about the origin of the immunogenicity of this antigen, and about its ability to induce a strong cross-bactericidal response in animals and humans. To characterize NHBA in terms of its structural/immunogenic properties, we have analyzed its sequence and identified a C-terminal region that is highly conserved in all strains. We demonstrate experimentally that this region is independently folded, and solved its three-dimensional structure by nuclear magnetic resonance. Notably, we need detergents to observe a single species in solution. The NHBA domain fold consists of an 8-strand ß-barrel that closely resembles the C-terminal domains of N. meningitidis factor H-binding protein and transferrin-binding protein B. This common fold together with more subtle structural similarities suggest a common ancestor for these important antigens and a role of the ß-barrel fold in inducing immunogenicity against N. meningitidis. Our data represent the first step toward understanding the relationship between structural, functional, and immunological properties of this important vaccine component.


Asunto(s)
Antígenos Bacterianos/química , Vacunas Meningococicas/química , Neisseria meningitidis Serogrupo B/química , Pliegue de Proteína , Antígenos Bacterianos/inmunología , Ensayos Clínicos Fase III como Asunto , Humanos , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad
8.
J Biol Chem ; 285(27): 21004-12, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20375014

RESUMEN

Aggregation and misfolding of the prion protein (PrP) are thought to be the cause of a family of lethal neurodegenerative diseases affecting humans and other animals. Although the structures of PrP from several species have been solved, still little is known about the mechanisms that lead to the misfolded species. Here, we show that the region of PrP comprising the hairpin formed by the helices H2 and H3 is a stable independently folded unit able to retain its secondary and tertiary structure also in the absence of the rest of the sequence. We also prove that the isolated H2H3 is highly fibrillogenic and forms amyloid fibers morphologically similar to those obtained for the full-length protein. Fibrillization of H2H3 but not of full-length PrP is concomitant with formation of aggregates. These observations suggest a "banana-peeling" mechanism for misfolding of PrP in which H2H3 is the aggregation seed that needs to be first exposed to promote conversion from a helical to a beta-rich structure.


Asunto(s)
Priones/química , Amiloide/química , Animales , Cromatografía en Gel , Dicroismo Circular , Escherichia coli/genética , Variación Genética , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Enfermedades Neurodegenerativas/etiología , Priones/genética , Priones/metabolismo , Priones/ultraestructura , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Ovinos , Termodinámica
9.
Bioinformatics ; 25(15): 1876-83, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19487258

RESUMEN

MOTIVATION: We have previously demonstrated that proteins may be aligned not only by sequence or structural homology, but also using their dynamical properties. Dynamics-based alignments are sensitive and powerful tools to compare even structurally dissimilar protein families. Here, we propose to use this method to predict protein regions involved in the binding of nucleic acids. We have used the OB-fold, a motif known to promote protein-nucleic acid interactions, to validate our approach. RESULTS: We have tested the method using this well-characterized nucleic acid binding family. Protein regions consensually involved in statistically significant dynamics-based alignments were found to correlate with nucleic acid binding regions. The validated scheme was next used as a tool to predict which regions of the AXH-domain representatives (a sub-family of the OB-fold for which no DNA/RNA complex is yet available) are putatively involved in binding nucleic acids. The method, therefore, is a promising general approach for predicting functional regions in protein families on the basis of comparative large-scale dynamics. AVAILABILITY: The software is available upon request from the authors, free of charge for academic users. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de Proteína/métodos , Secuencias de Aminoácidos , Sitios de Unión , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Pliegue de Proteína , ARN/química , ARN/metabolismo , Alineación de Secuencia/métodos , Programas Informáticos
10.
FEBS J ; 275(10): 2548-60, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18410380

RESUMEN

The leucine-rich repeat acidic nuclear protein (Anp32a/LANP) belongs to a family of evolutionarily-conserved phosphoproteins involved in a complex network of protein-protein interactions. In an effort to understand the cellular role, we have investigated the mode of interaction of Anp32a with its partners. As a prerequisite, we solved the structure in solution of the evolutionarily conserved N-terminal leucine-rich repeat (LRR) domain and modeled its interactions with other proteins, taking PP2A as a paradigmatic example. The interaction between the Anp32a LRR domain and the AXH domain of ataxin-1 was probed experimentally. The two isolated and unmodified domains bind with very weak (millimolar) affinity, thus suggesting the necessity either for an additional partner (e.g. other regions of either or both proteins or a third molecule) or for a post-translational modification. Finally, we identified by two-hybrid screening a new partner of the LRR domain, i.e. the microtubule plus-end tracking protein Clip 170/Restin, known to regulate the dynamic properties of microtubules and to be associated with severe human pathologies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Unión Proteica , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN , Técnicas del Sistema de Dos Híbridos
11.
Structure ; 13(5): 743-53, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15893665

RESUMEN

AXH is a protein module identified in two unrelated families that comprise the transcriptional repressor HBP1 and ataxin-1 (ATX1), the protein responsible for spinocerebellar ataxia type-1 (SCA1). SCA1 is a neurodegenerative disorder associated with protein misfolding and formation of toxic intranuclear aggregates. We have solved the structure in solution of monomeric AXH from HBP1. The domain adopts a nonclassical permutation of an OB fold and binds nucleic acids, a function previously unidentified for this region of HBP1. Comparison of HBP1 AXH with the crystal structure of dimeric ATX1 AXH indicates that, despite the significant sequence homology, the two proteins have different topologies, suggesting that AXH has chameleon properties. We further demonstrate that HBP1 AXH remains monomeric, whereas the ATX1 dimer spontaneously aggregates and forms fibers. Our results describe an entirely novel, to our knowledge, example of a chameleon fold and suggest a link between these properties and the SCA1 pathogenesis.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Sitios de Unión , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Soluciones , Ataxias Espinocerebelosas/metabolismo
12.
Nat Commun ; 8(1): 203, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28781362

RESUMEN

ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-L-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and L-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited L-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain.Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.


Asunto(s)
ATP Fosforribosil Transferasa/química , ATP Fosforribosil Transferasa/genética , ATP Fosforribosil Transferasa/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitio Alostérico , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares
13.
Nat Commun ; 8(1): 1939, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208891

RESUMEN

D-cycloserine is an antibiotic which targets sequential bacterial cell wall peptidoglycan biosynthesis enzymes: alanine racemase and D-alanine:D-alanine ligase. By a combination of structural, chemical and mechanistic studies here we show that the inhibition of D-alanine:D-alanine ligase by the antibiotic D-cycloserine proceeds via a distinct phosphorylated form of the drug. This mechanistic insight reveals a bimodal mechanism of action for a single antibiotic on different enzyme targets and has significance for the design of future inhibitor molecules based on this chemical structure.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Cicloserina/farmacología , Péptido Sintasas/antagonistas & inhibidores , Alanina Racemasa , Antibióticos Antituberculosos/metabolismo , Cicloserina/metabolismo , Escherichia coli , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/efectos de los fármacos , Péptido Sintasas/efectos de los fármacos , Fosforilación
14.
J Mol Biol ; 354(4): 883-93, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16277991

RESUMEN

A family of neurodegenerative diseases is associated with anomalous expansion of a polyglutamine tract in the coding region of the corresponding proteins. The current working hypothesis is that polyglutamine diseases are caused by misfolding and aggregation of the proteins with a process dictated by the polyglutamine tracts, although increasing evidence suggests an involvement of the protein context in modulating these properties. Here, we show that the AXH domain of ataxin-1, the protein involved in spinocerebellar ataxia type-1, is the region responsible for the transcriptional repression activity of ataxin-1 and participates in protein aggregation. In vitro, the isolated domain undergoes a conformational transition towards a beta-enriched structure associated with aggregation and amyloid fibre formation spontaneously and without need for destabilizing conditions. Using a transfected cell line, we demonstrate that, while determined by polyglutamine expansion, ataxin-1 aggregation is noticeably reduced by deletion of AXH or by replacement with the homologous sequence from the transcription factor HBP1, which has no known tendency to aggregate. These results provide the first direct evidence of an involvement of a region other than the polyglutamine tract in polyglutamine pathologies.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Amiloide , Animales , Ataxinas , Células COS , Chlorocebus aethiops , Dimerización , Regulación de la Expresión Génica , Enfermedades Neurodegenerativas/etiología , Péptidos/metabolismo , Péptidos/fisiología , Estructura Terciaria de Proteína , Proteínas Represoras , Temperatura , Transfección
15.
Front Mol Biosci ; 3: 83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28083536

RESUMEN

Nerve Growth Factor (NGF), the prototype of the neurotrophin family, is essential for maintenance and growth of different neuronal populations. The X-ray crystal structure of NGF has been known since the early '90s and shows a ß-sandwich fold with extensive loops that are involved in the interaction with its binding partners. Understanding the dynamical properties of these loops is thus important for molecular recognition. We present here a combined solution NMR/molecular dynamics study which addresses the question of whether and how much the long loops of NGF are flexible and describes the N-terminal intrinsic conformational tendency of the unbound NGF molecule. NMR titration experiments allowed identification of a previously undetected epitope of the anti-NGF antagonist antibody αD11 which will be of crucial importance for future drug lead discovery. The present study thus recapitulates all the available structural information and unveils the conformational versatility of the relatively rigid NGF loops upon functional ligand binding.

16.
Peptides ; 23(12): 2127-41, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12535691

RESUMEN

The protein IF(1) is a natural inhibitor of the mitochondrial F(o)F(1)-ATPase. Many investigators have been prompted to identify the shortest segment of IF(1), retaining its native activity, for use in biomedical applications. Here, the activity of the synthetic peptides IF(1)-(42-58) and IF(1)-(22-46) is correlated to their structure and conformational plasticity determined by CD and [1H]-NMR spectroscopy. Among all the IF(1) segments tested, IF(1)-(42-58) exerts the most potent, pH and temperature dependent activity on the F(o)F(1) complex. The results suggest that, due to its flexible structure, it can fold in helical and/or beta-spiral arrangements that favor the binding to the F(o)F(1) complex, where the native IF(1) binds. IF(1)-(22-46), instead, as it adopts a rigid alpha-helical conformation, it inhibits ATP hydrolysis only in the soluble F(1) moiety.


Asunto(s)
Péptidos/metabolismo , Proteínas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Animales , Bovinos , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Péptidos/química , Conformación Proteica , Proteínas/química , Relación Estructura-Actividad , Proteína Inhibidora ATPasa
17.
Trends Neurosci ; 37(4): 211-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24636457

RESUMEN

Understanding how proteins protect themselves from aberrant aggregation is of primary interest for understanding basic biology, protein biochemistry, and human disease. We discuss the paradigmatic example of ataxin-1 (Atx1), the protein responsible for neurodegenerative spinocerebellar ataxia type 1 (SCA1). This disease is part of the increasing family of pathologies caused by protein aggregation and misfolding. We discuss the importance of protein-protein interactions not only in the nonpathological function of Atx1 but also in protecting the protein from aggregation and misfolding. The lessons learned from Atx1 may lead to a more general understanding of the cell's protective strategies against aggregation. The obtained knowledge may suggest a new perspective for designing specific therapeutic strategies for the cure of misfolding diseases.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Ataxina-1 , Ataxinas , Expansión de las Repeticiones de ADN , Diseño de Fármacos , Trastornos Heredodegenerativos del Sistema Nervioso/tratamiento farmacológico , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Péptidos/genética , Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Multimerización de Proteína
18.
Biomol NMR Assign ; 8(2): 325-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23853075

RESUMEN

Ataxin-1 is the protein responsible for the genetically-inherited neurodegenerative disease spinocerebellar ataxia type-1 linked to the expansion of a polyglutamine tract within the protein sequence. The AXH domain of ataxin-1 is essential for the protein to function as a transcriptional co-repressor and mediates the majority of the interactions of ataxin-1 with cellular partners, mainly transcriptional regulators. One of the best characterized ataxin-1 functional partners is Capicua (CIC), a transcriptional repressor involved in signalling pathways that regulate mammalian development, tumorigenesis and, through the interaction with ataxin-1, also neurodegeneration. Complex formation of ataxin-1 with CIC is important both for the function of the wild-type protein and for pathogenesis as transcriptional disregulation is observed since the early stages of the development of the disease. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the human ataxin-1 AXH domain in complex with a CIC ligand-peptide.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Humanos , Ligandos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
19.
PeerJ ; 2: e323, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24711972

RESUMEN

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.

20.
PLoS One ; 8(10): e76456, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155902

RESUMEN

A main challenge for structural biologists is to understand the mechanisms that discriminate between molecular interactions and determine function. Here, we show how partner recognition of the AXH domain of the transcriptional co-regulator ataxin-1 is fine-tuned by a subtle balance between self- and hetero-associations. Ataxin-1 is the protein responsible for the hereditary spinocerebellar ataxia type 1, a disease linked to protein aggregation and transcriptional dysregulation. Expansion of a polyglutamine tract is essential for ataxin-1 aggregation, but the sequence-wise distant AXH domain plays an important aggravating role in the process. The AXH domain is also a key element for non-aberrant function as it intervenes in interactions with multiple protein partners. Previous data have shown that AXH is dimeric in solution and forms a dimer of dimers when crystallized. By solving the structure of a complex of AXH with a peptide from the interacting transcriptional repressor CIC, we show that the dimer interface of AXH is displaced by the new interaction and that, when blocked by the CIC peptide AXH aggregation and misfolding are impaired. This is a unique example in which palindromic self- and hetero-interactions within a sequence with chameleon properties discriminate the partner. We propose a drug design strategy for the treatment of SCA1 that is based on the information gained from the AXH/CIC complex.


Asunto(s)
Diseño de Fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Cromatografía en Gel , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA