Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 411(19): 4919-4928, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30941478

RESUMEN

Microfluidic paper-based devices (µPADs) and wearable devices have been highly studied to be used as diagnostic tools due to their advantages such as simplicity and ability to provide instrument-free fast results. Diseases such as periodontitis and diabetes mellitus can potentially be detected through these devices by the detection of important biomarkers. This study describes the development of µPADs through craft cutter printing for glucose and nitrite salivary diagnostics. In addition, the use of µPADs integrated into a mouthguard as a wearable sensor for glucose monitoring is also presented. µPADs were designed to contain two detection zones for glucose and nitrite assays and a sampling zone interconnected by microfluidic channels. Initially, the analytical performance of the proposed µPADs was investigated and it provided linear behavior (r2 ≥ 0.994) in the concentration ranges between 0 to 2.0 mmol L-1 and 0 to 400 µmol L-1 for glucose and nitrite, respectively. Under the optimized conditions, the limits of detection achieved for glucose and nitrite were 27 µmol L-1 and 7 µmol L-1, respectively. Human saliva samples were collected from healthy individuals and patients previously diagnosed with periodontitis or diabetes and then analyzed on the proposed µPADs. The results found using µPADs revealed higher glucose concentration values in saliva collected from patients diagnosed with diabetes mellitus and greater nitrite concentrations in saliva collected from patients diagnosed with periodontitis, as expected. The results obtained on µPADs did not differ statistically from those measured by spectrophotometry. With the aim of developing paper-based wearable sensors, µPADs were integrated, for the first time, into a silicone mouthguard using a 3D-printed holder. The proof of concept was successfully demonstrated through the monitoring of the glucose concentration in saliva after the ingestion of chocolate. According to the results reported herein, paper-based microfluidic devices offer great potential for salivary diagnostics, making their integration into a silicone mouthguard possible, generating simple, low-cost, instrument-free, and powerful wearable sensors.


Asunto(s)
Glucosa/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Saliva/metabolismo , Dispositivos Electrónicos Vestibles , Estudios de Casos y Controles , Colorimetría/métodos , Diabetes Mellitus/metabolismo , Humanos , Límite de Detección , Nitritos/metabolismo , Papel , Periodontitis/metabolismo , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados
2.
Anal Chem ; 90(20): 11949-11954, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30188682

RESUMEN

This study describes the use of mass spectrometry imaging with matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) to understand the color gradient generation commonly seen in microfluidic paper-based analytical devices (µPADs). The formation of color gradients significantly impacts assay sensitivity and reproducibility with µPADs but the mechanism for formation is poorly understood. The glucose enzymatic assay using potassium iodide (KI) as a chromogenic agent was selected to investigate the color gradient generated across a detection spot. Colorimetric measurements revealed that the relative standard deviation for the recorded pixel intensities ranged between 34 and 40%, compromising the analytical reliability. While a variety of hypotheses have been generated to explain this phenomenon, few studies have attempted to elucidate the mechanisms associated with its formation. Mass spectrometry imaging using MALDI and DESI was applied to understand the nonuniform color distribution on the detection zone. MALDI experiments were first explored to monitor the spatial distribution of the glucose oxidase and horseradish peroxidase mixture, before and after lateral flow assay with and without KI. MALDI(+)-TOF data revealed uniform enzyme distribution on the detection spots. On the other hand, after the complete assay DESI(-) measurements revealed a heterogeneous shape indicating the presence of iodide and triiodide ions at the zone edge. The reaction product (I3-) is transported by lateral flow toward the zone edge, generating the color gradient. Mass spectrometry imaging has been used for the first time to prove that color gradient forms as result of the mobility small molecules and not the enzyme distribution on µPAD surface.


Asunto(s)
Color , Colorimetría , Glucosa/análisis , Técnicas Analíticas Microfluídicas , Papel , Aspergillus niger/enzimología , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Imagen Óptica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA